Testing of the Bactericidal Action of Products Based on the “Hydronic” Technology (“Informed Glass”) on ATCC Strains of Pathogenic Gram-Positive and Gram-Negative Bacteria and Yeasts (Staphylococcus aureus,Escherichia coli, andCandida albicans)

2010 ◽  
Vol 16 (4) ◽  
pp. 463-471 ◽  
Author(s):  
Aleksandar Racz ◽  
Josip Cipriŝ
1988 ◽  
Vol 55 (4) ◽  
pp. 597-602 ◽  
Author(s):  
Lydia Bautista ◽  
Rohan G. Kroll

SummaryEffects of the addition of a proteinase (Neutrase 1–5S) and a peptidase (aminopeptidase DP-102) as agents for accelerating the ripening of Cheddar cheese on the survival of some non-starter bacteria (Staphylococcus aureus, Enterococcus faecalis, Escherichia coliand aSalmonellasp.) were studied throughout a 4-month ripening period. The enzymes were found to have no significant effect on the survival of the Gram-positive bacteria but some significant effects were observed, at some stages of the ripening period, with the Gram-negative bacteria in that lower levels were recovered from cheeses treated with the enzyme system.


2012 ◽  
Vol 3 ◽  
pp. 684-691 ◽  
Author(s):  
Mayuree Jaisai ◽  
Sunandan Baruah ◽  
Joydeep Dutta

Paper with antimicrobial properties was developed through in situ growth of ZnO nanorods. The targeted application for this type of paper is in health centers as wallpaper, writing paper, facemasks, tissue paper, etc. The paper was tested on three model microbes, Gram-positive bacteriaStaphylococcus aureus,Gram-negative bacteriaEscherichia coliand common airborne fungusAspergillus niger. No viable bacterial colonies or fungal spores could be detected in the areas surrounding test samples of the antimicrobial paper. Gram-negative bacteriaEscherichia coliwere found to be inhibited in an area that is 239% and 163% the area of the paper sample under different room lighting conditions, i.e., halogen and fluorescent lamp illumination, respectively. For Gram-positive bacteriaStaphylococcus aureusthe zones of inhibition surrounding the paper samples are 102% and 70%, and forAspergillus niger, 224% and 183% of the sample area, under similar lighting conditions.


2021 ◽  
Author(s):  
Samina Nazir Chaki ◽  
Levina Msuya ◽  
Deborah Mchaile ◽  
Michael Johnson Mahande ◽  
Ronald Mwitalemi Mbwasi ◽  
...  

Abstract Background: Bloodstream infections are major causes of morbidity and mortality among children in Sub-Saharan countries. This study aimed to determine the prevalence of bacteremia, etiological agents’ antibiotic susceptibility pattern and predictors of bacteremia among children with bloodstream Infection.Methodology: This hospital-based cross-section study involved children aged two months to thirteen years. All children meeting the inclusion criteria during the study period were enrolled. All consenting parents were interviewed via a questionnaire to collect data, followed by a thorough physical assessment and venipuncture was done to collect blood samples. Data were analysed using SPSS version 23.Results: Among 242 study participants, 154(63.6%) were male and blood cultures were positive in 37(15.3%). Gram-positive and gram-negative bacteria constituted 32(80%) and 8(20%), respectively. The frequent pathogen found was Staphylococcus aureus 25(62.5%), followed by Enterococcus spp. 4(10%), Escherichia coli 4(10%), Pseudomonas aeruginosa 3(7.5%), Streptococcus pyogenes 3(7.5%) and 1(2.5%) Klebsiella pneumonia. The majority of bacterial isolates showed high resistance to commonly used antibiotics in the study area. Predictors of bacteremia were severe malnutrition, hydrocephalus, hyperglycemia, lethargy and BSI with no foci of infection. Conclusion: Prevalence of bacteremia was 15.3%. Gram-positive bacteria were more prevalent than gram-negative bacteria. Staphylococcus aureus and Escherichia coli were the prevalent isolates causing BSI. Effective antibiotics for both gram-negative & gram-positive organisms are imipenem, meropenem and piperacillin-tazobactam followed by amikacin; vancomycin & clindamycin for gram-positive organisms. To curb the growing antimicrobial resistance that we see in this and other studies, continuous antimicrobial stewardship is necessary, else we risk failing to treat BSI.


Author(s):  
Adnal K. P. Husein Putra ◽  
Sri Sundari

Background: This study provides an overview of diabetic ulcer infection, antibiotic susceptibility patterns, the most common types of antibiotics, factors influence in antibiotics administrations, and verifying the guideline used of antibiotics.Methods: The research used descriptive analysis combined with interviews. The study was starting from February-March 2021. Eighty-six diabetic ulcer patients were selected considering the inclusion and exclusion criteria. We interviewed seven doctors.Results: 71 bacterias were found with a gram-negative bacteria count of 80.3%- higher than gram-positive bacteria (19.7%). The most common gram-negative bacteria found are Escherichia coli (12.7%) and show the most heightened sensitivity with imipenem (80.7%), while cefuroxime and trimethoprim-sulfamethoxazole show the highest resistance (64.9%). The most common gram-positive bacteria found are Staphylococcus aureus (14.1%), and vancomycin shows the most heightened sensitivity (100%), while penicillin shows the highest resistance (71.4%). The most common single antibiotic administration was ceftriaxone, as well as a combination of two antibiotics, namely ceftriaxone and metronidazole.Conclusions: Escherichia coli was the most gram-negative bacteria, which has the highest sensitivity with imipenem, while Staphylococcus aureus was the most gram-positive bacteria, which has the most heightened sensitivity with vancomycin. The most common single antibiotic administration was ceftriaxone, as well as a combination of two antibiotics, ceftriaxone and metronidazole. Factors that influence antibiotics administration are patient condition, susceptibility testing, training, and advice from colleagues. Every doctor uses different guidelines for diabetic foot ulcer.


2021 ◽  
Vol 4 (2) ◽  
pp. 113
Author(s):  
Neisya Intan Cahyaningtyas Agung Putri ◽  
Ramadhani Ramadhani ◽  
Eddy Bagus Wasito

Introduction: Biodiversity of the microorganism in Indonesia lead to the large amount of patient with infection. Human can get infected in two different place, with different kind of bacteria that cause the infection. This may lead to bacteremia without knowing which bacteria type whose causing it, either the Gram positive or Gram negative bacteria, whereas the treatment of this two types of bacteria are different. The aim of this study is to determine the doubling time of the Gram positive and Gram negative bacteria when they are grown in the same lesion and the kinds of bacteria that we need to eliminate first.Methods: Staphylococcus aureus and Escherichia coli bacteria were used as samples in this study. Bacterial culture in nutrient broth with 0.5 OD turbidity were mixed then incubated in incubator with 35˚C. Every one hour within 24 hour, 0.01 ml of bacterial culture was taken in serial dilutionover time, varying between 106 – 1012, . It was then planted in nutrient agar plate with droplets technique. After it had been incubated for 24 hours, we counted the Colony Forming Unit per ml (CFU/ml) to time, then the doubling time of the bacteria. The result were then compared between the Staphylococcus aureus and Escherichia coli group.Results: Two tailed t-test result of the doubling time between Staphylococcus aureus dan Escherichia coli was < 0,05 (p=0,000) wich means that there is significant difference of the doubling time between Staphylococcus aureus (24,35 ± 2,23 munites), and Escherichia coli (18,37 ± 0,50 minutes). When grown in the same media, Gram positive bacteria (Staphylococcus aureus) had slower doubling time than Gram negative bacteria (Escherichia coli) as much as 1.32 times.Conclusion: In bacteremia with two possible kinds of bacterial suspect, we need to eliminate the Gram negative bacteria first.


2021 ◽  
Vol 33 (11) ◽  
pp. 2662-2666
Author(s):  
Amnuay Noypha ◽  
Paweena Porrawatkul ◽  
Nongyao Teppaya ◽  
Parintip Rattanaburi ◽  
Saksit Chanthai ◽  
...  

Borassus flabellifer vinegar–graphene quantum dots (BFV-GQDs) were successfully synthesized using a pyrolysis method with Borassus flabellifer vinegar (BFV) as the precursor. All the samples were characterized using ultraviolet-visible spectrophotometry (UV-Vis), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The antibacterial activities of BFV-GQDs against strains of Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) were determined using the agar well diffusion method for preliminary screening, while minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth macro-dilution method. The zones of inhibition were compared with those of citric acid–graphene quantum dots (CA-GQDs). It was observed that the synthesized BFV-GQDs demonstrated excellent antibacterial activity against Staphylococcus aureus (82.3%) and good antibacterial activity against Escherichia coli (73.3%). The MIC of BFV-GQDs against E. coli was 6.25 mg/mL and S. aureus was 12.5 mg/mL, whereas the MBC of BFV-GQDs against E. coli was 12.5 mg/mL and S. aureus was 25.0 mg/mL.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Eyob Yohannes Garoy ◽  
Yacob Berhane Gebreab ◽  
Oliver Okoth Achila ◽  
Nobiel Tecklebrhan ◽  
Hermon Michael Tsegai ◽  
...  

Background. The World Health Organization has emphasized the importance of understanding the epidemiology of MDR organisms from a local standpoint. Here, we report on a spectrum of bacteria associated with surgical site infections in two referral hospitals in Eritrea and the associated antibiotic susceptibility patterns. Methods. This survey was conducted between February and May 2017. A total of 83 patients receiving treatment for various surgical conditions were included. Swabs from infected surgical sites were collected using Levine technique and processed using standard microbiological procedures. In vitro antimicrobial susceptibility testing was performed on Mueller–Hinton Agar by the Kirby-Bauer disk diffusion method following Clinical and Laboratory Standards Institute guidelines. The data were analyzed using SPSS version 20. Results. A total of 116 isolates were recovered from 83 patients. In total, 67 (58%) and 49 (42%) of the isolates were Gram-positive and Gram-negative bacteria, respectively. The most common isolates included Citrobacter spp., Klebsiella spp., Escherichia coli, Proteus spp., Pseudomonas aeruginosa, Salmonella spp., Enterobacter spp., and Acinetobacter spp. In contrast, Staphylococcus aureus, CONS, and Streptococcus viridians were the predominant Gram-positive isolates. All the Staphylococcus aureus isolates were resistant to penicillin. MRSA phenotype was observed in 70% of the isolates. Vancomycin, clindamycin, and erythromycin resistance were observed in 60%, 25%, and 25% of the isolates, respectively. Furthermore, a high proportion (91%) of the Gram-negative bacteria were resistant to ampicillin and 100% of the Pseudomonas aeruginosa and Escherichia coli isolates were resistant to >5 of the tested antibiotics. The two Acinetobacter isolates were resistant to >7 antimicrobial agents. We also noted that 4 (60%) of the Klebsiella isolates were resistant to >5 antimicrobial agents. Possible pan-drug-resistant (PDR) strains were also isolated. Conclusion. Due to the high frequency of MDR isolates reported in this study, the development and implementation of suitable infection control policies and guidelines is imperative.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1487
Author(s):  
Ana Sandoval Vergara ◽  
Marlon Farfán Córdova ◽  
Marco Leoncio Salazar Castillo ◽  
Icela Marissa Rodríguez Haro ◽  
Ana Paula Vizconde Rodríguez

Background: Plant-derived compounds are sometimes used as substitutes for pharmaceuticals. Mauritia flexuosa is a palm tree that is widely distributed in South America, especially in the Amazon region. The San Martín region of Peru, in which this species of the Arecaceae family is found, has great biological diversity and there is economic potential in the utilization of natural resources in the region. Methods: In this study, the antibacterial effect of the hydroalcoholic extract of Mauritia flexuosa leaves was evaluated for gram-positive bacteria Staphylococcus aureus ATCC 25923 and Bacillus subtilis ATCC 6633 and gram-negative Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Salmonella enterica subsp. enterica ser. Typhi ATCC 11011. Mauritia flexuosa leaves were used to prepare concentrations of 10, 20, 40 and 60mg/ml. Phytochemical analysis was performed to identify secondary metabolites in the plants. For the experiment, 10 Mueller-Hinton agar plates were prepared and 1ml of bacterial inoculum, standardized to 0.5 McFarland, was added to each plate. The hydroalcoholic extract was added via the diffusion method, making five holes of 5mm each (four with extract concentrations and one with distilled water as a control group), and the plates were incubated for 24 hours at 36°C. The inhibition halo was measured in mm using a digital vernier caliper. Results: For gram-negative bacteria, an antibacterial effect was demonstrated for Pseudomonas aeruginosa only, at an extract concentration of 60mg/ml, with an inhibition halo of 14.8 mm. For gram-positive bacteria Baccillus subtilis and Staphylococcus aureus, an antibacterial effect was demonstrated at an extract concentration of 60mg/ml, with inhibition halos of 13.2mm and 15.4mm in diameter, respectively. Conclusion: It can be concluded that the hydroalcoholic extract of Mauritia flexuosa does not inhibit bacterial growth for gram-negative bacteria Salmonella Typhi and Escherichia coli.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Jessica Rompis ◽  
Henry Aritonang ◽  
Julius Pontoh

Telah dilakukan penelitian mengenai sintesis nanokomposit ZnO-MgO dan analisis efektivitasnya sebagai antibakteri dengan variasi berat Mg(NO3)2 .6H2O (1% & 2%) yang diambil dari berat Zn(NO3)2.4H2O. Nanokomposit tersebut dikarakterisasi menggunakan XRD dan EDS serta diuji efektivitas antibakterinya. Uji efektivitas antibakteri mengunakan bakteri Staphylococcus aureus (Gram-positif) dan Escherichia coli (Gram-negatif). Hasil penelitian menunjukan bahwa ukuran nanopartikelnya adalah 17,41 nm, dan 16,84 nm,. Kemudian efektivitas antibakteri diketahui berdasarkan luasnya zona bening yang terbentuk dan diperoleh masing-masing sebesar 16,7 mm, dan 17,9 mm,  untuk bakteri E.coli dan 15 mm, 15,8 mm, untuk bakteri S.aureus. Nanokomposit ZnO-MgO lebih efektif dalam menghambat pertumuhan bakteri E.coli dibandingkan dengan bakteri S.aureus.ABSTRACT Research on the synthesis of ZnO-MgO nanocomposites and analysis of its effectiveness as an antibacterial has been carried out with variations in molecular weight of Mg (NO3) 2.6H2O (1%, & 2%) taken from the weight of Zn (NO3) 2.4 H2O.The nanocomposites were characterized using XRD and EDS and tested for their antibacterial effectiveness.Antibacterial effectiveness test using Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) bacteria. The results showed that the size of the nanoparticles were 17.41 nm,  and 16.84 nm,. Then the effectiveness of antibacterial is known based on the extent of the clear zone formed and obtained respectively of 16.7 mm, and 17.9 mm, for bacteria E. coli and 15 mm, and 15.8 mm for S.aureus bacteria.


Sign in / Sign up

Export Citation Format

Share Document