Insights on Genetic Diversity, Population Structure, and Linkage Disequilibrium in Globally Diverse Coconut Accessions Using Genotyping-by-Sequencing

Author(s):  
Muliyar Krishna Rajesh ◽  
Sunil Shivaji Gangurde ◽  
Manish Kumar Pandey ◽  
Vittal Niral ◽  
Raju Sudha ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guoping Shu ◽  
Gangqiang Cao ◽  
Niannian Li ◽  
Aifang Wang ◽  
Fang Wei ◽  
...  

AbstractMaize (Zea mays L.) germplasm in China Summer maize ecological region (CSM) or central corn-belt of China is diverse but has not been systematically characterized at molecular level. In this study, genetic variation, genome diversity, linkage disequilibrium patterns, population structure, and characteristics of different heterotic groups were studied using 525,141 SNPs obtained by Genotyping-By-Sequencing (GBS) for 490 inbred lines collected from researchers at CSM region. The SNP density is lower near centromere, but higher near telomere region of maize chromosome, the degree of linkage disequilibrium (r2) vary at different chromosome regions. Majority of the inbred lines (66.05%) show pairwise relative kinship near zero, indicating a large genetic diversity in the CSM breeding germplasm. Using 4849 tagSNPs derived from 3618 haplotype blocks, the 490 inbred lines were delineated into 3 supergroups, 6 groups, and 10 subgroups using ADMIXTURE software. A procedure of assigning inbred lines into heterotic groups using genomic data and tag-SNPs was developed and validated. Genome differentiation among different subgroups measured by Fst, and the genetic diversity within each subgroup measured by GD are both large. The share of heterotic groups that have significant North American germplasm contribution: P, SS, IDT, and X, accounts about 54% of the CSM breeding germplasm collection and has increased significantly in the last two decades. Two predominant types of heterotic pattern in CSM region are: M-Reid group × TSPT group, and X subgroup × Local subgroups.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 283 ◽  
Author(s):  
Carla V. Filippi ◽  
Gabriela A. Merino ◽  
Juan F. Montecchia ◽  
Natalia C. Aguirre ◽  
Máximo Rivarola ◽  
...  

Sunflower germplasm collections are valuable resources for broadening the genetic base of commercial hybrids and ameliorate the risk of climate events. Nowadays, the most studied worldwide sunflower pre-breeding collections belong to INTA (Argentina), INRA (France), and USDA-UBC (United States of America–Canada). In this work, we assess the amount and distribution of genetic diversity (GD) available within and between these collections to estimate the distribution pattern of global diversity. A mixed genotyping strategy was implemented, by combining proprietary genotyping-by-sequencing data with public whole-genome-sequencing data, to generate an integrative 11,834-common single nucleotide polymorphism matrix including the three breeding collections. In general, the GD estimates obtained were moderate. An analysis of molecular variance provided evidence of population structure between breeding collections. However, the optimal number of subpopulations, studied via discriminant analysis of principal components (K = 12), the bayesian STRUCTURE algorithm (K = 6) and distance-based methods (K = 9) remains unclear, since no single unifying characteristic is apparent for any of the inferred groups. Different overall patterns of linkage disequilibrium (LD) were observed across chromosomes, with Chr10, Chr17, Chr5, and Chr2 showing the highest LD. This work represents the largest and most comprehensive inter-breeding collection analysis of genomic diversity for cultivated sunflower conducted to date.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Paul I. Otyama ◽  
Andrew Wilkey ◽  
Roshan Kulkarni ◽  
Teshale Assefa ◽  
Ye Chu ◽  
...  

2017 ◽  
Vol 13 (6) ◽  
Author(s):  
Stijn Vanderzande ◽  
Diego Micheletti ◽  
Michela Troggio ◽  
Mark W. Davey ◽  
Johan Keulemans

2019 ◽  
Author(s):  
Tika B. Adhikari ◽  
Brian J. Knaus ◽  
Niklaus J. Grünwald ◽  
Dennis Halterman ◽  
Frank J. Louws

ABSTRACTGenotyping by sequencing (GBS) is considered a powerful tool to discover single nucleotide polymorphisms (SNPs), which are useful to characterize closely related genomes of plant species and plant pathogens. We applied GBS to determine genome-wide variations in a panel of 187 isolates of three closely related Alternaria spp. that cause diseases on tomato and potato in North Carolina (NC) and Wisconsin (WI). To compare genetic variations, reads were mapped to both A. alternata and A. solani draft reference genomes and detected dramatic differences in SNPs among them. Comparison of A. linariae and A. solani populations by principal component analysis revealed the first (83.8% of variation) and second (8.0% of variation) components contained A. linariae from tomato in NC and A. solani from potato in WI, respectively, providing evidence of population structure. Genetic differentiation (Hedrick’s G’ST) in A. linariae populations from Haywood, Macon, and Madison counties in NC were little or no differentiated (G’ST 0.0 - 0.2). However, A. linariae population from Swain county appeared to be highly differentiated (G’ST > 0.8). To measure the strength of the linkage disequilibrium (LD), we also calculated the allelic association between pairs of loci. Lewontin’s D (measures the fraction of allelic variations) and physical distances provided evidence of linkage throughout the entire genome, consistent with the hypothesis of non-random association of alleles among loci. Our findings provide new insights into the understanding of clonal populations on a genome-wide scale and microevolutionary factors that might play an important role in population structure. Although we found limited genetic diversity, the three Alternaria spp. studied here are genetically distinct and each species is preferentially associated with one host.


2022 ◽  
Author(s):  
Ming Jiang ◽  
Song Yan ◽  
Weichao Ren ◽  
Nannan Xing ◽  
Hongyuan Li ◽  
...  

Abstract Bupleurum (named “Chai-hu”) is an important traditional Chinese medicine resource in China. It has been widely used since ancient times and has antipyretic, analgesic and cholagogic functions, but there is little research on its genetic diversity. In this study, genotyping-by-sequencing (GBS) was used to detect SNP loci in 39 Bupleurum germplasm resources from different regions in China and analyse their genetic diversity. A total of 25.1 Gb of data was obtained by sequencing, with an average of 0.64 Gb per sample. After screening, 83898 high-quality SNPs were obtained. The results of genetic research were obtained by phylogenetic tree, principal component analysis and population structure analysis, and the 39 experimental materials were divided into three groups. The average observed heterozygosity and expected heterozygosity of Bupleurum populations were 0.24 and 0.17, respectively, indicating that Bupleurum populations from five different provinces had a low level of genetic diversity. Population nucleotide diversity analysis and analysis of molecular variance showed that the percentage of intrapopulation variation was 120.88%, while the percentage of interpopulation variation was only 2.46%. There was relative aggregation of Bupleurum samples with the same geographical origin, but the division of population structure was not completely correlated with sample origin. The results showed that the genetic diversity of the materials was low and that the genetic variation was narrow. This provides a good basis for the genetic breeding and protection of species diversity of Bupleurum.


Sign in / Sign up

Export Citation Format

Share Document