Potential Biological Remediation Strategies for Removing Perchlorate from Martian Regolith

New Space ◽  
2021 ◽  
Author(s):  
Gina Misra ◽  
William Smith ◽  
Madeline Garner ◽  
Rafael Loureiro
Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1962 ◽  
Author(s):  
Urbaniak ◽  
Wyrwicka ◽  
Siebielec ◽  
Siebielec ◽  
Kidd ◽  
...  

Our aim was to assess the efficacy of four different bioremediation strategies applied to soil treated with urban sediments for alleviating soil phytotoxicity (examined using Lepidium sativum), by removing polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), and mitigating the toxic effect on plants by the applied sediment: (1) Natural attenuation, (2) phytoremediation with the use of two plants Tagetes patula L. and Festuca arundinacea, (3) rhizobacterial inoculation with Massilia niastensis p87 and Streptomyces costaricanus RP92 strains, (4) rhizobacteria-assisted phytoremediation with both plants and strains. The applied sediment had a positive influence on L. sativum growth (90% higher than in the unamended soil), mostly due to its high content of nutrients, mainly Ca and Fe, which immobilize pollutants. The positive effect of sediments continued for up to 10-week duration of the experiment; however, the rhizobacterial inoculated samples were characterized by higher growth of L. sativum. The application of rhizobacteria-assisted phytoremediation further increased the growth of L. sativum, and was also found to improve the efficiency of PCDD/PCDF removal, resulting in a maximum 44% reduction of its content. This strategy also alleviated the negative impact of urban sediments on T. patula and F. arundinacea biomass, and had a beneficial effect on protein and chlorophyll content in the studied plants.


Author(s):  
E. C. Buck ◽  
N. L. Dietz ◽  
J. K. Bates

Operations at former weapons processing facilities in the U. S. have resulted in a large volume of radionuclidecontaminated soils and residues. In an effort to improve remediation strategies and meet environmental regulations, radionuclide-bearing particles in contaminant soils from Fernald in Ohio and the Rocky Flats Plant (RFP) in Colorado have been characterized by electron microscopy. The object of these studies was to determine the form of the contaminant radionuclide, so that it properties could be established [1]. Physical separation and radiochemical analysis determined that uranium contamination at Fernald was not present exclusively in any one size/density fraction [2]. The uranium-contamination resulted from aqueous and solid product spills, air-borne dust particles, and from the operation of an incinerator on site. At RFP the contamination was from the incineration of Pu-bearing materials. Further analysis by x-ray absorption spectroscopy indicated that the majority of the uranium was in the 6+ oxidation state [3].


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1073
Author(s):  
Claudia Campillo-Cora ◽  
Laura Rodríguez-González ◽  
Manuel Arias-Estévez ◽  
David Fernández-Calviño ◽  
Diego Soto-Gómez

Chromium is an element that possess several oxidation states and can easily pass from one to another, so its behavior in soils is very complex. For this reason, determining its fate in the environment can be difficult. In this research work we tried to determine which factors affect the chromium fractionation in natural soils, conditioning chromium mobility. We paid special attention to the parent material. For this purpose, extraction experiments were carried out on spiked soils incubated for 50–60 days, using H2O, CaCl2 and diethylenetriaminepentaacetic acid (DTPA). The most efficient extraction rate in all soils was achieved using water, followed by CaCl2 and DTPA. We obtained models with an adjusted R2 of 0.8097, 0.8471 and 0.7509 for the H2O Cr, CaCl2 Cr and DTPA Cr respectively. All models were influenced by the amount of chromium added and the parent material: amphibolite and granite influenced the amount of H2O Cr extracted, and schist affected the other two fractions (CaCl2 and DTPA). Soil texture also played an important role in the chromium extraction, as well as the amounts of exchangeable aluminum and magnesium, and the bioavailable phosphorus. We concluded that it is possible to make relatively accurate predictions of the behavior of the different Cr fractions studied, so that optimized remediation strategies for chromium-contaminated soils can be designed on the basis of a physicochemical soil characterization.


Author(s):  
Zheyong Li ◽  
Yajun Yuan ◽  
Lin Ma ◽  
Yihui Zhang ◽  
Hongwei Jiang ◽  
...  

Selenium (Se) is an essential and crucial micronutrient for humans and animals, but excessive Se brings negativity and toxicity. The adsorption and oxidation of Se(IV) on Mn-oxide surfaces are important processes for understanding the geochemical fate of Se and developing engineered remediation strategies. In this study, the characterization of simultaneous adsorption, oxidation, and desorption of Se(IV) on δ-MnO2 mineral was carried out using stirred-flow reactors. About 9.5% to 25.3% of Se(IV) was oxidized to Se(VI) in the stirred-flow system in a continuous and slow process, with the kinetic rate constant k of 0.032 h−1, which was significantly higher than the apparent rate constant of 0.0014 h−1 obtained by the quasi-level kinetic fit of the batch method. The oxidation reaction was driven by proton concentration, and its rate also depended on the Se(IV) influent concentration, flow rate, and δ-MnO2 dosage. During the reaction of Se(IV) and δ-MnO2, Mn(II) was produced and adsorbed strongly on Mn oxide surfaces, which was evidenced by the total reflectance Fourier transform infrared (ATR-FTIR) results. The X-ray photoelectron spectroscopy (XPS) data indicated that the reaction of Se(VI) on δ-MnO2 produced Mn(III) as the main product. These results contribute to a deeper understanding of the interface chemical process of Se(IV) with δ-MnO2 in the environment.


2021 ◽  
Vol 211 ◽  
pp. 111887
Author(s):  
Fasih Ullah Haider ◽  
Cai Liqun ◽  
Jeffrey A. Coulter ◽  
Sardar Alam Cheema ◽  
Jun Wu ◽  
...  

Author(s):  
Fernando A.F. Ferreira ◽  
Ronald W. Spahr ◽  
Mark A. Sunderman ◽  
Kannan Govindan ◽  
Ieva Meidutė-Kavaliauskienė

2018 ◽  
Vol 8 (20) ◽  
Author(s):  
John Vincent R. Pleto ◽  
Mark Dondi M. Arboleda ◽  
Jessica F. Simbahan ◽  
Veronica P. Migo

Background. Water quality in the Marilao-Meycauayan-Obando river system (MMORS) of Bulacan, the Philippines, is of great concern due to the pollution load from local industries. The river system is currently used as a source of water for the aquaculture industry in Bulacan. Objectives. In order to address organic and heavy metal pollution, several remediation strategies were tested in aquaculture ponds along the river system. Strategies such as phytoremediation (vetiver grass pontoons), application of probiotics and zeolite (with filtration as pre-treatment) were utilized in ponds to decrease or remove toxic pollutants in water and sediments. Methods. Two sites were chosen as the pilot remediation sites – ponds in Barangay Nagbalon, Marilao and Barangay Liputan, Meycauayan, Bulacan. Pond bottom preparation was done to improve the condition of the pond bottom sediments before stocking by adding zeolite. Physicochemical parameters of water such as dissolved oxygen (DO), temperature, pH, salinity, ammonia, phosphate, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) were monitored throughout the culture period. Heavy metals in sediments and fish were monitored. Fish parameters such as average body weight and feed conversion ratio were determined. Results. The DO levels were below recommended levels in the morning and reached a supersaturated level in the afternoon. Ammonia and COD levels were above recommended limits. A decreasing trend was observed for ammonia levels in treatment ponds. In terms of the growth of milkfish, the pond with probiotics showed the highest growth and better feed conversion ratio in Nagbalon and in the phytoremediation pond in Liputan. Percentage survival of milkfish was much higher at Liputan. Copper, chromium, lead and manganese were detected in pond sediments. After application of zeolite, there was a decrease in lead levels throughout the culture period. Conclusions. The different remediation studies were compared in terms of cost, effectivity and application and phytoremediation (vetiver grass pontoons) was determined to be the most cost-effective remediation strategy. Competing Interests. The authors declare no competing financial interests.


Sign in / Sign up

Export Citation Format

Share Document