Optimization of application-driven development of in vitro neuromuscular junction models

Author(s):  
Julie B Strickland ◽  
Katie Davis-Anderson ◽  
Sofiya N Micheva-Viteva ◽  
Scott Twary ◽  
Rashi Iyer ◽  
...  
Biomedicines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Borja Sanz ◽  
Ane Albillos Sanchez ◽  
Bonnie Tangey ◽  
Kerry Gilmore ◽  
Zhilian Yue ◽  
...  

Collagen is a major component of the extracellular matrix (ECM) that modulates cell adhesion, growth, and migration, and has been utilised in tissue engineering applications. However, the common terrestrial sources of collagen carry the risk of zoonotic disease transmission and there are religious barriers to the use of bovine and porcine products in many cultures. Marine based collagens offer an attractive alternative and have so far been under-utilized for use as biomaterials for tissue engineering. Marine collagen can be extracted from fish waste products, therefore industry by-products offer an economical and environmentally sustainable source of collagen. In a handful of studies, marine collagen has successfully been methacrylated to form collagen methacrylate (ColMA). Our work included the extraction, characterization and methacrylation of Red Snapper collagen, optimisation of conditions for neural cell seeding and encapsulation using the unmodified collagen, thermally cross-linked, and the methacrylated collagen with UV-induced cross-linking. Finally, the 3D co-axial printing of neural and skeletal muscle cell cultures as a model for neuromuscular junction (NMJ) formation was investigated. Overall, the results of this study show great potential for a novel NMJ in vitro 3D bioprinted model that, with further development, could provide a low-cost, customizable, scalable and quick-to-print platform for drug screening and to study neuromuscular junction physiology and pathogenesis.


1989 ◽  
Vol 108 (2) ◽  
pp. 625-635 ◽  
Author(s):  
J K Daniloff ◽  
K L Crossin ◽  
M Pinçon-Raymond ◽  
M Murawsky ◽  
F Rieger ◽  
...  

Cytotactin is an extracellular glycoprotein found in a highly specialized distribution during embryonic development. In the brain, it is synthesized by glia, not neurons. It is involved in neuron-glia adhesion in vitro and affects neuronal migration in the developing cerebellum. In an attempt to extend these observations to the peripheral nervous system, we have examined the distribution and localization of cytotactin in different parts of the normal and regenerating neuromuscular system. In the normal neuromuscular system, cytotactin accumulated at critical sites of cell-cell interactions, specifically at the neuromuscular junction and the myotendinous junction, as well at the node of Ranvier (Rieger, F., J. K. Daniloff, M. Pinçon-Raymond, K. L. Crossin, M. Grumet, and G. M. Edelman. 1986. J. Cell Biol. 103:379-391). At the neuromuscular junction, cytotactin was located in terminal nonmyelinating Schwann cells. Cytotactin was also detected near the insertion points of the muscle fibers to tendinous structures in both the proximal and distal endomysial regions of the myotendinous junctions. This was in striking contrast to staining for the neural cell adhesion molecule, N-CAM, which was accumulated near the extreme ends of the muscle fiber. Peripheral nerve damage resulted in modulation of expression of cytotactin in both nerve and muscle, particularly among the interacting tissues during regeneration and reinnervation. In denervated muscle, cytotactin accumulated in interstitial spaces and near the previous synaptic sites. Cytotactin levels were elevated and remained high along the endoneurial tubes and in the perineurium as long as muscle remained denervated. Reinnervation led to a return to normal levels of cytotactin both in inner surfaces of the nerve fascicles and in the perineurium. In dorsal root ganglia, the processes surrounding ganglionic neurons became intensely stained by anticytotactin antibodies after the nerve was cut, and returned to normal by 30 d after injury. These data suggest that local signals between neurons, glia, and supporting cells may regulate cytotactin expression in the neuromuscular system in a fashion coordinate with other cell adhesion molecules. Moreover, innervation may regulate the relative amount and distribution of cytotactin both in muscle and in Schwann cells.


Author(s):  
Eileen Lynch ◽  
Emma Peek ◽  
Megan Reilly ◽  
Claire FitzGibbons ◽  
Samantha Robertson ◽  
...  

1982 ◽  
Vol 53 (1) ◽  
pp. 253-257 ◽  
Author(s):  
B. E. Skoogh ◽  
M. J. Holtzman ◽  
J. R. Sheller ◽  
J. A. Nadel

To determine which site in the vagal motor pathway to airway smooth muscle is most sensitive to depression by barbiturates, we recorded isometric muscle tension in vitro and stimulated the vagal motor pathway at four different sites before and after exposure to barbiturates. In isolated tracheal rings from ferrets, we stimulated muscarinic receptors in the neuromuscular junction by exogenous acetylcholine, postganglionic nerve fibers by electrical fluid stimulation, and the postsynaptic membrane in ganglia by 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP). We also developed a tracheal nerve-muscle preparation to stimulate preganglionic fibers in the vagus nerve electrically. Activation of ganglia by DMPP or by vagus nerve stimulation was depressed by barbiturates at 10-fold lower concentrations than those depressing the activation of postganglionic nerves or the neuromuscular junction. These findings suggest that the postsynaptic membrane in parasympathetic ganglia is the site in the vagal motor pathway most sensitive to depression by barbiturates.


1996 ◽  
Vol 109 (13) ◽  
pp. 2959-2966
Author(s):  
G. Escher ◽  
C. Bechade ◽  
S. Levi ◽  
A. Triller

Agrin, a synaptic basal lamina protein synthesized by motoneurons is involved in the aggregation of nicotinic acetylcholine receptors (nAchRs) at the neuromuscular junction. Agrin transcripts are broadly expressed in the central nervous system (CNS) including non-cholinergic regions. This wide distribution of agrin mRNAs raises the question of its function in these areas. To approach this question, we analysed the expression and cellular distribution of agrin in primary cultures of rat embryonic dorsal horn neurons. Polymerase chain reaction analysis demonstrated that the four agrin isoform (B0, B8, B11, B19) mRNAs are expressed as early as 4 days in vitro, before the formation of functional synaptic contacts. Western blots also showed that agrin-like proteins are secreted in conditioned medium from 7 days cultures. We analysed the subcellular distribution of agrin by double immunolabeling and fluorescence microscopy. We found that agrin is synthesized by almost all neurons and was present in the somata and in the axons but not in dendrites within the sensitivity of the detection. This intra-axonal localisation of agrin could only be seen after permeabilization. Furthermore, agrin immunoreactive axons were found adjacent to gephyrin, the postsynaptic glycine receptor-associated protein. Altogether, our results suggest that, as established at the neuromuscular junction, agrin may be involved in pre- to postsynaptic interactions in the central nervous system.


2013 ◽  
Vol 545 ◽  
pp. 29-34 ◽  
Author(s):  
Takahiro Fukazawa ◽  
Masaya Matsumoto ◽  
Takeshi Imura ◽  
Elham Khalesi ◽  
Teruyuki Kajiume ◽  
...  

1986 ◽  
Vol 103 (2) ◽  
pp. 521-534 ◽  
Author(s):  
J D Black ◽  
J O Dolly

The labeling patterns produced by radioiodinated botulinum neurotoxin (125I-BoNT) types A and B at the vertebrate neuromuscular junction were investigated using electron microscopic autoradiography. The data obtained allow the following conclusions to be made. 125I-BoNT type A, applied in vivo or in vitro to mouse diaphragm or frog cutaneous pectoris muscle, interacts saturably with the motor nerve terminal only; silver grains occur on the plasma membrane, within the synaptic bouton, and in the axoplasm of the nerve trunk, suggesting internalization and retrograde intra-axonal transport of toxin or fragments thereof. 125I-BoNT type B, applied in vitro to the murine neuromuscular junction, interacts likewise with the motor nerve terminal except that a lower proportion of internalized radioactivity is seen. This result is reconcilable with the similar, but not identical, pharmacological action of these toxin types. The saturability of labeling in each case suggested the involvement of acceptors; on preventing the internalization step with metabolic inhibitors, their precise location became apparent. They were found on all unmyelinated areas of the nerve terminal membrane, including the preterminal axon and the synaptic bouton. Although 125I-BoNT type A interacts specifically with developing terminals of newborn rats, the unmyelinated plasma membrane of the nerve trunk is not labeled, indicating that the acceptors are unique components restricted to the nerve terminal area. BoNT types A and B have distinct acceptors on the terminal membrane. Having optimized the conditions for saturation of these binding sites and calibrated the autoradiographic procedure, we found the densities of the acceptors for types A and B to be approximately 150 and 630/micron 2 of membrane, respectively. It is proposed that these membrane acceptors target BoNT to the nerve terminal and mediate its delivery to an intracellular site, thus contributing to the toxin's selective inhibitory action on neurotransmitter release.


Toxicon ◽  
2018 ◽  
Vol 156 ◽  
pp. S84
Author(s):  
Camille Nicoleau ◽  
Dorothée Buttigieg ◽  
Sullivan Henriques ◽  
Johannes Krupp ◽  
Jacquie Maignel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document