Adipose tissue and skeletal muscle expression of genes associated with thyroid hormone action in obesity and insulin resistance

Thyroid ◽  
2021 ◽  
Author(s):  
Marek Strączkowski ◽  
Agnieszka Nikołajuk ◽  
Magdalena Stefanowicz ◽  
Natalia Matulewicz ◽  
José Manuel Fernández-Real ◽  
...  
2009 ◽  
Vol 201 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Camilla Alexanderson ◽  
Elias Eriksson ◽  
Elisabet Stener-Victorin ◽  
Malin Lönn ◽  
Agneta Holmäng

Early postnatal events can predispose to metabolic and endocrine disease in adulthood. In this study, we evaluated the programming effects of a single early postnatal oestradiol injection on insulin sensitivity in adult female rats. We also assessed the expression of genes involved in inflammation and glucose metabolism in skeletal muscle and adipose tissue and analysed circulating inflammation markers as possible mediators of insulin resistance. Neonatal oestradiol exposure reduced insulin sensitivity and increased plasma levels of monocyte chemoattractant protein-1 (MCP-1) and soluble intercellular adhesion molecule-1. In skeletal muscle, oestradiol increased the expression of genes encoding complement component 3 (C3), Mcp-1, retinol binding protein-4 (Rbp4) and transforming growth factor β1 (Tgfβ1). C3 and MCP-1 are both related to insulin resistance, and C3, MCP-1 and TGFβ1 are also involved in inflammation. Expression of genes encoding glucose transporter-4 (Glut 4), carnitine-palmitoyl transferase 1b (Cpt1b), peroxisome proliferator-activated receptor δ (Ppard) and uncoupling protein 3 (Ucp3), which are connected to glucose uptake, lipid oxidation, and energy uncoupling, was down regulated. Expression of several inflammatory genes in skeletal muscle correlated negatively with whole-body insulin sensitivity. In s.c. inguinal adipose tissue, expression of Tgfβ1, Ppard and C3 was decreased, while expression of Rbp4 and Cpt1b was increased. Inguinal adipose tissue weight was increased but adipocyte size was unaltered, suggesting an increased number of adipocytes. We suggest that early neonatal oestrogen exposure may reduce insulin sensitivity by inducing chronic, low-grade systemic and skeletal muscle inflammation and disturbances of glucose and lipid metabolism in skeletal muscle in adulthood.


2020 ◽  
Vol 105 (12) ◽  
pp. e4866-e4874
Author(s):  
Hannes Beiglböck ◽  
Peter Wolf ◽  
Lorenz Pfleger ◽  
Burak Caliskan ◽  
Paul Fellinger ◽  
...  

Abstract Context Thyroid function is clinically evaluated by determination of circulating concentrations of thyrotropin (thyroid-stimulating hormone; TSH) and free thyroxine (fT4). However, a tissue-specific effector substrate of thyroid function is lacking. Energy-rich phosphorus-containing metabolites (PM) and phospholipids (PL) might be affected by thyroid hormone action and can be noninvasively measured by 31P nuclear magnetic resonance spectroscopy (NMRS). Objectives To measure the actions of peripheral thyroid hormones on PM and PL tissue concentrations. Design and Setting A longitudinal, prospective pilot study was performed. Participants Nine patients with hyperthyroidism (HYPER) and 4 patients with hypothyroidism (HYPO) were studied at baseline and 3 months after treatment. Main Outcome Measures High-field 1H/31P NMRS was used to assess profiles of PM, PL, and flux through oxidative phosphorylase in liver and skeletal muscle, as well as ectopic tissue lipid content. Results The concentrations of total skeletal muscle (m-) and hepatic (h-) phosphodiesters (PDE) and one of the PDE constituents, glycerophosphocholine (GPC), were lower in HYPER compared with HYPO (m-PDE: 1.4 ± 0.4 mM vs 7.4 ± 3.5 mM, P = 0.003; m-GPC: 0.9 ± 0.3 mM vs 6.7 ± 3.5 mM, P = 0.003; h-PDE: 4.4 ± 1.4 mM vs 9.9 ± 3.9 mM, P = 0.012; h-GPC: 2.2 ± 1.0 mM vs 5.1 ± 2.4 mM, P = 0.024). Both h-GPC (rho = −0.692, P = 0.018) and h-GPE (rho = −0.633, P = 0.036) correlated negatively with fT4. In muscle tissue, a strong negative association between m-GPC and fT4 (rho = −0.754, P = 0.003) was observed. Conclusions Thyroxine is closely negatively associated with the PDE concentrations in liver and skeletal muscle. Normalization of thyroid dysfunction resulted in a decline of PDE in hypothyroidism and an increase in hyperthyroidism. Thus, PDE might be a sensitive tool to estimate tissue-specific peripheral thyroid hormone action.


2014 ◽  
Vol 122 (03) ◽  
Author(s):  
H Rakov ◽  
K Engels ◽  
D Zwanziger ◽  
M Renders ◽  
K Brix ◽  
...  

2011 ◽  
Vol 74 (3) ◽  
pp. 346-353 ◽  
Author(s):  
Sebastián Susperreguy ◽  
Liliana Muñoz ◽  
Natalia Y. Tkalenko ◽  
Ivan D. Mascanfroni ◽  
Vanina A. Alamino ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Fabrice Chatonnet ◽  
Frédéric Picou ◽  
Teddy Fauquier ◽  
Frédéric Flamant

Thyroid hormones (TH, including the prohormone thyroxine (T4) and its active deiodinated derivative 3,,5-triiodo-L-thyronine (T3)) are important regulators of vertebrates neurodevelopment. Specific transporters and deiodinases are required to ensure T3 access to the developing brain. T3 activates a number of differentiation processes in neuronal and glial cell types by binding to nuclear receptors, acting directly on transcription. Only few T3 target genes are currently known. Deeper investigations are urgently needed, considering that some chemicals present in food are believed to interfere with T3 signaling with putative neurotoxic consequences.


1975 ◽  
Vol 292 (20) ◽  
pp. 1063-1068 ◽  
Author(s):  
Howard L. Bleich ◽  
Emily S. Boro ◽  
Jack H. Oppenheimer

Sign in / Sign up

Export Citation Format

Share Document