Respiratory Syncytial Virus Proteins Modulate Suppressors of Cytokine Signaling 1 and 3 and the Type I Interferon Response to Infection by a Toll-Like Receptor Pathway

2009 ◽  
Vol 22 (3) ◽  
pp. 147-161 ◽  
Author(s):  
Christine M. Oshansky ◽  
Thomas M. Krunkosky ◽  
Jamie Barber ◽  
Les P. Jones ◽  
Ralph A. Tripp
2006 ◽  
Vol 80 (12) ◽  
pp. 5958-5967 ◽  
Author(s):  
Alexander Kotelkin ◽  
Igor M. Belyakov ◽  
Lijuan Yang ◽  
Jay A. Berzofsky ◽  
Peter L. Collins ◽  
...  

ABSTRACT The NS1 and NS2 proteins of human respiratory syncytial virus (HRSV) have been shown to antagonize the type I interferon (IFN) response, an effect subject to host range constraints. We have now found that the HRSV NS2 protein strongly controls IFN induction in mouse cells in vitro, validating the use of the mouse model to study the consequences of these gene deletions on host immunity. We evaluated the effects of deleting the NS1 and/or NS2 gene on the induction of HRSV-specific pulmonary cytotoxic T lymphocytes (CTL) in BALB/c and 129S6 mice in response to intranasal infection with HRSV lacking the NS1 and/or NS2 gene and subsequent challenge with wild-type (wt) HRSV. In mice infected with HRSV lacking the NS2 gene (ΔNS2) or lacking the NS2 gene in combination with the NS1 gene (ΔNS1/2 HRSV), the magnitude of the pulmonary CTL response was substantially elevated compared to that of mice infected with wt HRSV or the ΔNS1 mutant, whether measured by binding of CD8+ cells to an HRSV-specific major histocompatibility complex class I tetramer, by measurement of CD8+ cells secreting gamma interferon (IFN-γ) in response to specific in vitro stimulation, or by a standard chromium release cell-killing assay. In contrast, in STAT1 knockout mice, which lack responsiveness to type I IFN, the level of IFN-γ-secreting CD8+ cells was not significantly different for HRSV lacking the NS2 gene, suggesting that the increase in CTL observed in IFN-responsive mice is type I IFN dependent. Thus, the NS2 protein of HRSV suppresses the CTL component of the adaptive immune response, and this appears to be a consequence of its suppression of type I IFN.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Maria Ansar ◽  
Yue Qu ◽  
Teodora Ivanciuc ◽  
Roberto P. Garofalo ◽  
Antonella Casola

Respiratory syncytial virus (RSV) infection in mouse and human lung is associated with pathogenic inflammation and oxidative injury. RSV impairs antioxidant responses by increasing the degradation of transcription factor NF-E2-related factor 2 (NRF2), which controls the expression of several antioxidant enzymes (AOEs). In addition to its protective effects, type I IFNs have been increasingly recognized as important mediators of host pathogenic responses during acute respiratory viral infections. We used a mouse model of RSV infection to investigate the effect of lack of type I interferon (IFN) receptor on viral-mediated clinical disease, airway inflammation, NRF2 expression, and antioxidant defenses. In the absence of type I IFN signaling, RSV-infected mice showed significantly less body weight loss and airway obstruction, as well as a significant reduction in cytokine and chemokine secretion and airway inflammation. Lack of type I IFN receptor was associated with greatly reduced virus-induced promyelocytic leukemia lung protein expression, which we showed to be necessary for virus-induced NRF2 degradation in a cell model of infection, resulting in restoration of NRF2 levels, AOE expression, and airway antioxidant capacity. Our data support the concept that modulation of type I IFN production and/or signaling could represent an important therapeutic strategy to ameliorate severity of RSV-induced lung disease.


Virology ◽  
2006 ◽  
Vol 344 (2) ◽  
pp. 328-339 ◽  
Author(s):  
Murali Ramaswamy ◽  
Lei Shi ◽  
Steven M. Varga ◽  
Sailen Barik ◽  
Mark A. Behlke ◽  
...  

2007 ◽  
Vol 81 (7) ◽  
pp. 3428-3436 ◽  
Author(s):  
Joanne Elliott ◽  
Oonagh T. Lynch ◽  
Yvonne Suessmuth ◽  
Ping Qian ◽  
Caroline R. Boyd ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) infection causes bronchiolitis and pneumonia in infants. RSV has a linear single-stranded RNA genome encoding 11 proteins, 2 of which are nonstructural (NS1 and NS2). RSV specifically downregulates STAT2 protein expression, thus enabling the virus to evade the host type I interferon response. Degradation of STAT2 requires proteasomal activity and is dependent on the expression of RSV NS1 and NS2 (NS1/2). Here we investigate whether RSV NS proteins can assemble ubiquitin ligase (E3) enzymes to target STAT2 to the proteasome. We demonstrate that NS1 contains elongin C and cullin 2 binding consensus sequences and can interact with elongin C and cullin 2 in vitro; therefore, NS1 has the potential to act as an E3 ligase. By knocking down expression of specific endogenous E3 ligase components using small interfering RNA, NS1/2, or RSV-induced STAT2, degradation is prevented. These results indicate that E3 ligase activity is crucial for the ability of RSV to degrade STAT2. These data may provide the basis for therapeutic intervention against RSV and/or logically designed live attenuated RSV vaccines.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Diego R. Hijano ◽  
David T. Siefker ◽  
Bishwas Shrestha ◽  
Sridhar Jaligama ◽  
Luan D. Vu ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Junwen Zheng ◽  
Pu Yang ◽  
Yan Tang ◽  
Zishu Pan ◽  
Dongchi Zhao

Respiratory syncytial virus (RSV) infection upregulates genes of the suppressor of cytokine signaling (SOCS) family, which utilize a feedback loop to inhibit type I interferon dependent antiviral signaling pathway. Here, we reconstituted RSV nonstructural (NS) protein expression plasmids (pNS1, pNS2, and pNS1/2) and tested whether NS1 or NS2 would trigger SOCS1 and SOCS3 protein expression. These NS proteins inhibited interferon- (IFN-)αsignaling through a mechanism involving the induction of SOCS1 and SOCS3, which appeared to be different from autocrine IFN dependent. NS1 induced both SOCS1 and SOCS3 upregulation, while NS2 only induced SOCS1 expression. The induced expression of SOCS1 and SOCS3 preceded endogenous IFN-signaling activation and inhibited the IFN-inducible antiviral response as well as chemokine induction. Treatments with INF-αand NS proteins both induced SOCS1 expression; however, they had opposing effects on IFN-α-dependent antiviral gene expression. Our results indicate that NS1 and NS2, which induce the expression of SOCS1 or SOCS3, might represent an independent pathway of stimulating endogenous IFN signaling.


Sign in / Sign up

Export Citation Format

Share Document