scholarly journals Cytoplasmic Localization and Evolutionary Conservation of MEI-218, a Protein Required for Meiotic Crossing-over inDrosophila

2002 ◽  
Vol 13 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Elizabeth A. Manheim ◽  
Janet K. Jang ◽  
Danielle Dominic ◽  
Kim S. McKim

During Drosophila oogenesis, the oocyte is formed within a 16-cell cyst immediately after four incomplete cell divisions. One of the primary events in oocyte development is meiotic recombination. Here, we report the intracellular localization of the MEI-218 protein that is specifically required for meiotic crossing-over. To understand the role of mei-218 in meiosis and to study the regulation of genes required for meiotic recombination, we characterized the expression pattern of its RNA and protein. Furthermore, we cloned and sequenced mei-218from two other Drosophila species. Themei-218 RNA and protein have a similar expression pattern, appearing first in early meiotic prophase and then rapidly disappearing as prophase is completed. This pattern corresponds to a specific appearance of the mei-218 gene product in the region of the ovary where meiotic prophase occurs. Althoughmei-218 is required for 95% of all crossovers, the protein is found exclusively in the cytoplasm. Based on these results, we suggest that mei-218 does not have a direct role in recombination but rather regulates other factors required for the production of crossovers. We propose that mei-218 is a molecular link between oocyte differentiation and meiosis.

Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 245-258 ◽  
Author(s):  
Hao Liu ◽  
Janet K Jang ◽  
Naohiro Kato ◽  
Kim S McKim

AbstractDouble-strand breaks (DSB) initiate meiotic recombination in a variety of organisms. Here we present genetic evidence that the mei-P22 gene is required for the induction of DSBs during meiotic prophase in Drosophila females. Strong mei-P22 mutations eliminate meiotic crossing over and suppress the sterility of DSB repair-defective mutants. Interestingly, crossing over in mei-P22 mutants can be restored to almost 50% of wild-type by X irradiation. In addition, an antibody-based assay was used to demonstrate that DSBs are not formed in mei-P22 mutants. This array of phenotypes is identical to that of mei-W68 mutants; mei-W68 encodes the Drosophila Spo11 homolog that is proposed to be an enzyme required for DSB formation. Consistent with a direct role in DSB formation, mei-P22 encodes a basic 35.7-kD protein, which, when examined by immunofluorescence, localizes to foci on meiotic chromosomes. MEI-P22 foci appear transiently in early meiotic prophase, which is when meiotic recombination is believed to initiate. By using an antibody to C(3)G as a marker for synaptonemal complex (SC) formation, we observed that SC is present before MEI-P22 associates with the chromosomes, thus providing direct evidence that the development of SC precedes the initiation of meiotic recombination. Similarly, we found that MEI-P22 foci did not appear in a c(3)G mutant in which SC does not form, suggesting that DSB formation is dependent on SC formation in Drosophila. We propose that MEI-P22 interacts with meiosis-specific chromosome proteins to facilitate DSB creation by MEI-W68.


2004 ◽  
Vol 15 (4) ◽  
pp. 1568-1579 ◽  
Author(s):  
David Perera ◽  
Livia Perez-Hidalgo ◽  
Peter B. Moens ◽  
Kaarina Reini ◽  
Nicholas Lakin ◽  
...  

Mammalian TopBP1 is a BRCT domain–containing protein whose function in mitotic cells is linked to replication and DNA damage checkpoint. Here, we study its possible role during meiosis in mice. TopBP1 foci are abundant during early prophase I and localize mainly to histone γ-H2AX–positive domains, where DNA double–strand breaks (required to initiate recombination) occur. Strikingly, TopBP1 showed a pattern almost identical to that of ATR, a PI3K-like kinase involved in mitotic DNA damage checkpoint. In the synapsis-defective Fkbp6-/- mouse, TopBP1 heavily stains unsynapsed regions of chromosomes. We also tested whether Schizosaccharomyces pombe Cut5 (the TopBP1 homologue) plays a role in the meiotic recombination checkpoint, like spRad3, the ATR homologue. Indeed, we found that a cut5 mutation suppresses the checkpoint-dependent meiotic delay of a meiotic recombination defective mutant, indicating a direct role of the Cut5 protein in the meiotic checkpoint. Our findings suggest that ATR and TopBP1 monitor meiotic recombination and are required for activation of the meiotic recombination checkpoint.


2006 ◽  
Vol 34 (4) ◽  
pp. 542-544 ◽  
Author(s):  
F.C.H. Franklin ◽  
J.D. Higgins ◽  
E. Sanchez-Moran ◽  
S.J. Armstrong ◽  
K.E. Osman ◽  
...  

Immunocytochemistry reveals that the Arabidopsis mismatch repair proteins AtMSH4, AtMLH3 and AtMLH1 are expressed during prophase I of meiosis. Expression of AtMSH4 precedes AtMLH3 and AtMLH1 which co-localize as foci during pachytene. Co-localization between AtMSH4 and AtMLH3 occurs, but appears transient. AtMLH3 foci are not detected in an Atmsh4 mutant. However, localization of AtMSH4 is unaffected in Atmlh3, suggesting that recombination may proceed to dHj (double Holliday junction) formation. Mean chiasma frequency in Atmsh4 is reduced to 1.55 compared with 9.86 in wild-type. In contrast with wild-type, the distribution of residual crossovers in Atmsh4 closely fits a Poisson distribution. This is consistent with a two-pathway model for meiotic crossing-over whereby most crossovers occur via an AtMSH4-dependent pathway that is subject to interference, with the remaining crossovers arising via an interference-independent pathway. Loss of AtMLH3 results in an approx. 60% reduction in crossovers. Results suggest that dHj resolution can occur, but in contrast with wild-type where most or all dHjs are directed to form crossovers, the outcome is biased in favour of a non-crossover outcome. The results are compatible with a model whereby the MutL complex maintains or imposes a dHj conformation that ensures crossover formation.


2021 ◽  
Vol 22 (5) ◽  
pp. 2250
Author(s):  
Evita Athanasiou ◽  
Antonios N. Gargalionis ◽  
Fotini Boufidou ◽  
Athanassios Tsakris

The role of certain viruses in malignant brain tumor development remains controversial. Experimental data demonstrate that human herpesviruses (HHVs), particularly cytomegalovirus (CMV), Epstein–Barr virus (EBV) and human herpes virus 6 (HHV-6), are implicated in brain tumor pathology, although their direct role has not yet been proven. CMV is present in most gliomas and medulloblastomas and is known to facilitate oncomodulation and/or immunomodulation, thus promoting cancer cell proliferation, invasion, apoptosis, angiogenesis, and immunosuppression. EBV and HHV-6 have also been detected in brain tumors and high-grade gliomas, showing high rates of expression and an inflammatory potential. On the other hand, due to the neurotropic nature of HHVs, novel studies have highlighted the engagement of such viruses in the development of new immunotherapeutic approaches in the context of oncolytic viral treatment and vaccine-based strategies against brain tumors. This review provides a comprehensive evaluation of recent scientific data concerning the emerging dual role of HHVs in malignant brain pathology, either as potential causative agents or as immunotherapeutic tools in the fight against these devastating diseases.


Genetics ◽  
2000 ◽  
Vol 155 (4) ◽  
pp. 1757-1772 ◽  
Author(s):  
Scott L Page ◽  
Kim S McKim ◽  
Benjamin Deneen ◽  
Tajia L Van Hook ◽  
R Scott Hawley

Abstract We present the cloning and characterization of mei-P26, a novel P-element-induced exchange-defective female meiotic mutant in Drosophila melanogaster. Meiotic exchange in females homozygous for mei-P261 is reduced in a polar fashion, such that distal chromosomal regions are the most severely affected. Additional alleles generated by duplication of the P element reveal that mei-P26 is also necessary for germline differentiation in both females and males. To further assess the role of mei-P26 in germline differentiation, we tested double mutant combinations of mei-P26 and bag-of-marbles (bam), a gene necessary for the control of germline differentiation and proliferation in both sexes. A null mutation at the bam locus was found to act as a dominant enhancer of mei-P26 in both males and females. Interestingly, meiotic exchange in mei-P261; bamΔ86/+ females is also severely decreased in comparison to mei-P261 homozygotes, indicating that bam affects the meiotic phenotype as well. These data suggest that the pathways controlling germline differentiation and meiotic exchange are related and that factors involved in the mitotic divisions of the germline may regulate meiotic recombination.


Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 607-620 ◽  
Author(s):  
Jeremy M Grushcow ◽  
Teresa M Holzen ◽  
Ken J Park ◽  
Ted Weinert ◽  
Michael Lichten ◽  
...  

Abstract Checkpoint gene function prevents meiotic progression when recombination is blocked by mutations in the recA homologue DMC1. Bypass of dmc1 arrest by mutation of the DNA damage checkpoint genes MEC1, RAD17, or RAD24 results in a dramatic loss of spore viability, suggesting that these genes play an important role in monitoring the progression of recombination. We show here that the role of mitotic checkpoint genes in meiosis is not limited to maintaining arrest in abnormal meioses; mec1-1, rad24, and rad17 single mutants have additional meiotic defects. All three mutants display Zip1 polycomplexes in two- to threefold more nuclei than observed in wild-type controls, suggesting that synapsis may be aberrant. Additionally, all three mutants exhibit elevated levels of ectopic recombination in a novel physical assay. rad17 mutants also alter the fraction of recombination events that are accompanied by an exchange of flanking markers. Crossovers are associated with up to 90% of recombination events for one pair of alleles in rad17, as compared with 65% in wild type. Meiotic progression is not required to allow ectopic recombination in rad17 mutants, as it still occurs at elevated levels in ndt80 mutants that arrest in prophase regardless of checkpoint signaling. These observations support the suggestion that MEC1, RAD17, and RAD24, in addition to their proposed monitoring function, act to promote normal meiotic recombination.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Neha Pandey ◽  
Meghana Rastogi ◽  
Sunit K. Singh

Abstract Background Chandipura virus (CHPV) is a negative single-stranded RNA virus of the Rhabdoviridae family. CHPV infection has been reported in Central and Western India. CHPV causes acute encephalitis with a case fatality rate of 70 % and mostly affects children below 15 years of age. CHPV infection in brain leads to neuronal apoptosis and activation of the microglial cells. The microRNAs (miRNAs) are small endogenous non-coding RNA that regulate the gene expression. Viral infections perturb the expression pattern of cellular miRNAs, which may in turn affect the expression pattern of downstream genes. This study aims to investigate hsa-miR-21-5p mediated regulation of PTEN, AKT, NF-ĸBp65, IL-6, TNF-α, and IL-1β, in human microglial cells during CHPV infection. Methods To understand the role of hsa-miR-21-5p in CHPV infection, the human microglial cells were infected with CHPV (MOI-0.1). Real-time PCR, western blotting, Luciferase assay, over-expression and knockdown techniques were used to understand the role of hsa-miR-21-5p in the regulation of PTEN, AKT and, NF-ĸBp65, IL-6, TNF-α, and IL-1β in this study. Results The hsa-miR-21-5p was found to be upregulated during CHPV infection in human microglial cells. This led to the downregulation of PTEN which promoted the phosphorylation of AKT and NF-ĸBp65. Over-expression of hsa-miR-21-5p led to the decreased expression of PTEN and promoted further phosphorylation of AKT and NF-ĸBp65 in human microglial cells. However, the inhibition of hsa-miR-21-5p using hsa-miR-21-5p inhibitor restored the expression. Conclusions This study supports the role of hsa-miR-21-5p in the regulation of pro-inflammatory genes in CHPV infected human microglial cells.


Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1261-1272 ◽  
Author(s):  
Laura Salem ◽  
Natalie Walter ◽  
Robert Malone

Abstract REC104 is a gene required for the initiation of meiotic recombination in Saccharomyces cerevisiae. To better understand the role of REC104 in meiosis, we used an in vitro mutagenesis technique to create a set of temperature-conditional mutations in REC104 and used one ts allele (rec104-8) in a screen for highcopy suppressors. An increased dosage of the early exchange gene REC102 was found to suppress the conditional recombinational reduction in rec104-8 as well as in several other conditional rec104 alleles. However, no suppression was observed for a null allele of REC104, indicating that the suppression by REC102 is not “bypass” suppression. Overexpression of the early meiotic genes REC114, RAD50, HOP1, and RED1 fails to suppress any of the rec104 conditional alleles, indicating that the suppression might be specific to REC102.


Sign in / Sign up

Export Citation Format

Share Document