scholarly journals Chandipura virus dysregulates the expression of hsa-miR-21-5p to activate NF-κB in human microglial cells

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Neha Pandey ◽  
Meghana Rastogi ◽  
Sunit K. Singh

Abstract Background Chandipura virus (CHPV) is a negative single-stranded RNA virus of the Rhabdoviridae family. CHPV infection has been reported in Central and Western India. CHPV causes acute encephalitis with a case fatality rate of 70 % and mostly affects children below 15 years of age. CHPV infection in brain leads to neuronal apoptosis and activation of the microglial cells. The microRNAs (miRNAs) are small endogenous non-coding RNA that regulate the gene expression. Viral infections perturb the expression pattern of cellular miRNAs, which may in turn affect the expression pattern of downstream genes. This study aims to investigate hsa-miR-21-5p mediated regulation of PTEN, AKT, NF-ĸBp65, IL-6, TNF-α, and IL-1β, in human microglial cells during CHPV infection. Methods To understand the role of hsa-miR-21-5p in CHPV infection, the human microglial cells were infected with CHPV (MOI-0.1). Real-time PCR, western blotting, Luciferase assay, over-expression and knockdown techniques were used to understand the role of hsa-miR-21-5p in the regulation of PTEN, AKT and, NF-ĸBp65, IL-6, TNF-α, and IL-1β in this study. Results The hsa-miR-21-5p was found to be upregulated during CHPV infection in human microglial cells. This led to the downregulation of PTEN which promoted the phosphorylation of AKT and NF-ĸBp65. Over-expression of hsa-miR-21-5p led to the decreased expression of PTEN and promoted further phosphorylation of AKT and NF-ĸBp65 in human microglial cells. However, the inhibition of hsa-miR-21-5p using hsa-miR-21-5p inhibitor restored the expression. Conclusions This study supports the role of hsa-miR-21-5p in the regulation of pro-inflammatory genes in CHPV infected human microglial cells.

2020 ◽  
Author(s):  
Xiangrong Cui ◽  
Xuan Jing ◽  
Junfen Liu ◽  
Meiqin Yan ◽  
Xingyu Bi ◽  
...  

Abstract Background: Polycystic ovary syndrome (PCOS) is one of the most common endocrine metabolic disorders characterized by hyperandrogenism, polycystic ovaries and ovulatory dysfunction. Several studies have suggested that the aberrant expression of miRNAs serves an important role in the pathogenesis of PCOS, though the role and underling mechanism of microRNA-132 (miR-132) in the development of PCOS remain unclear. Methods: The expression of miR-132 in granulosa cells (GCs) derived from 26 PCOS patients and 30 healthy controls was detected through RT-qPCR. And the apoptosis levels of granulosa cells were measured by TUNEL.Granulosa-like tumor cell line (KGN) was cultured for cell counting kit-8 (CCK-8) was assays after over-expression of miR-132 or knockdown TargetScan was applied to analysis the potential targets of miR-132, which was further verified by luciferase assay, RT-qPCR and western blot. Results: The expression of miR-132 was declined in granulosa cells of PCOS patients. Meanwhile, the significantly increased apoptotic nuclei were present GCs of PCOS patients. Furthermore, over-expressed of miR-132 inhibited the proliferation of KCN cells. In addition, our results verified that miR-132 directly targeted Foxa1, knockdown of which suppressed KGN cells proliferation. Conclusion: Our results revealed that miR-132 inhibits the cell viability and induces apoptosis by directly interacting with Foxa1, indicating a role of miR-132 to be a potential target in the PCOS patients.


2020 ◽  
Vol 21 (17) ◽  
pp. 6183
Author(s):  
Beatrice Polini ◽  
Sara Carpi ◽  
Stefano Doccini ◽  
Valentina Citi ◽  
Alma Martelli ◽  
...  

Background: Remarkable deregulation of several microRNAs (miRNAs) is demonstrated in cutaneous melanoma. hsa-miR-193a-3p is reported to be under-expressed in tissues and in plasma of melanoma patients, but the role of both miR-193a arms in melanoma is not known yet. Methods: After observing the reduced levels of miR-193a arms in plasma exosomes of melanoma patients, the effects of hsa-miR-193a-3p and –5p transfection in cutaneous melanoma cell lines are investigated. Results: In melanoma cell lines A375, 501Mel, and MeWo, the ectopic over-expression of miR-193a arms significantly reduced cell viability as well as the expression of genes involved in proliferation (ERBB2, KRAS, PIK3R3, and MTOR) and apoptosis (MCL1 and NUSAP1). These functional features were accompanied by a significant downregulation of Akt and Erk pathways and a strong increase in the apoptotic process. Since in silico databases revealed TROY, an orphan member of the tumor necrosis receptor family, as a potential direct target of miR-193a-5p, this possibility was investigated using the luciferase assay and excluded by our results. Conclusions: Our results underline a relevant role of miR-193a, both -3p and -5p, as tumor suppressors clarifying the intracellular mechanisms involved and suggesting that their ectopic over-expression could represent a novel treatment for cutaneous melanoma patients.


2002 ◽  
Vol 22 (5) ◽  
pp. 576-585 ◽  
Author(s):  
Olivia Hurtado ◽  
Ignacio Lizasoain ◽  
Paz Fernández-Tomé ◽  
Alberto Álvarez-Barrientos ◽  
Juan C. Leza ◽  
...  

The role of the tumor necrosis factor (TNF)-α convertase (TACE/ADAM17) in the adult nervous system remains poorly understood. The authors have previously demonstrated that TACE is upregulated in rat forebrain slices exposed to oxygen–glucose deprivation (OGD). They have now used rat mixed cortical cultures exposed to OGD or glutamate to study (1) TACE expression and localization, and (2) the effects of TNF-α release on cell viability. OGD- or glutamate-caused TNF-α release, an effect that was blocked by the TACE inhibitor BB3103 (BB) (0.1–1 μmol/L; control: 1.67 ± 0.59; OGD: 6.59 ± 1.52; glutamate: 3.38 ± 0.66; OGD ± BB0.1: 3.23 ± 0.67; OGD ± BB1: 1.33 ± 0.22 pg/mL, n = 6, P < 0.05). Assay of TACE activity as well as Western blot showed that TACE expression is increased in OGD- or glutamate-exposed cells. In control cultures, TACE immunoreactivity was present in some microglial cells, whereas, after OGD or glutamate, TACE immunostaining appeared in most microglial cells and in some astrocytes. Conversely, BB3103 (0.1 μmol/L) caused apoptosis after glutamate exposure as shown by annexin and Hoechst 33342 staining and caspase-3 activity, an effect mimicked by the proteasome inhibitor MG-132 (caspase activity: glutamate: 5.1 ± 0.1; glutamate + BB: 7.8 ± 0.8; glutamate + MG: 11.9 ± 0.5 pmol · min−1 mg−1 protein, n = 4, P < 0.05), suggesting that translocation of the transcription factor NF-κB mediates TNF-α–induced antiapoptotic effect. Taken together, these data demonstrate that, in rat mixed neuronal–glial cortical cultures exposed to OGD or glutamate, (1) TACE/ADAM17 activity accounts for the majority of TNF-α shedding, (2) an increase in glial TACE expression contributes to the rise in TNF-α, and (3) TNF-α release in this setting inhibits apoptosis via activation of the transcription factor NF-κB.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3586-3586
Author(s):  
Ada Congrains ◽  
João Agostinho Machado-Neto ◽  
Flávia Adolfo Corrocher ◽  
Renata Giardini Rosa ◽  
Fernanda Soares Niemann ◽  
...  

Abstract Aberrant regulation of the WNT signaling pathway is a signature in numerous human cancers. Lymphoid enhancer-binding factor-1 (LEF1) is an important transcription factor downstream of this pathway. LEF1 over-expression induces AML in mice and plays a critical role in hematopoietic cell differentiation (Petropoulos et al JME 2008). Reduction of LEF1 expression through the progression of myelodysplastic syndrome has been reported and further supports the relevance of this gene in the disease pathogenesis (Pellagatti et al Br J Haematol. 2009). Our previous work using microarray technology revealed a decreased expression of a long non-coding RNA antisense to LEF1 (LEF1-AS) in MDS patients (Baratti et al BMC Medical Genomics 2010). Mounting evidence suggests that long non-coding transcripts play important roles in the epigenetic regulation of coding genes. In this context it is not surprising that long non-coding RNAs are emerging as key players in disease development and progression. Non-coding expression overlapping coding genes is very common and several examples of local regulation have been described in the literature. Here we investigate for the first time the role of LEF1 antisense long non-coding in hematopoiesis and demonstrated its contribution in the regulation of the LEF1 locus in a leukemic cell line. To explore a possible role of LEF1-AS in differentiation, we evaluated the expression pattern of LEF1-AS through erythroid cell differentiation using qRT-PCR. CD34+ HSC cells from 6 healthy donors were induced to differentiate into erythrocytes by addition of erythropoietin during 12 days. We observed that LEF1-AS is modulated during erythroid differentiation. It was significantly down-regulated during the first stages of differentiation from CD34+ HSC to erythroblast (from collection day 6 to day 8 after addition of erythropoietin, 78% mean reduction, P<0.0001) and it was up-regulated at the end-point of collection, day 12 (not significant). Lef1 coding gene displayed a similar expression pattern, consistent with previous reports of Lef1 expression during erythroid maturation (Edmaier et al Leukemia 2014). To explore a possible regulatory role of LEF1-AS, we cloned and over-expressed the transcript in KG1 CD34+ leukemia cell line. Transient over-expression of Lef1-AS led to a significant up-regulation of Lef1 gene (22% increase, P<0.05). We also observed an increase in cell viability (19% increase P<0.05), measured by MTT, which is consistent with the up-regulation of LEF1, a pro-proliferative and anti-apoptotic transcription factor. Our preliminary results from over-expressing LEF1-AS in CD34+ HSCs suggest a similar regulatory effect of LEF1-AS upon its coding counterpart, LEF1. Since aberrant expression of LEF1 is known to disrupt normal differentiation of CD34+ cells, LEF1-AS could potentially affect differentiation through the modulation of LEF1 coding gene. Our results reveal LEF1-AS transcript as a novel player in hematopoiesis and hematologic malignancy. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Fazhao Li ◽  
Jun He ◽  
Susun Liu ◽  
Yawei Zhang ◽  
Leping Yang

AbstractRadio-resistance is a growing concern in treating patients with pancreatic cancer (PC). Here we investigated the role of miR-590-5p in the radio-resistance of PC cells. We developed radioresistant PC cell lines and followed by microarray analysis and levels of miRs compared to parental cell lines. PC cells were transfected using either miR mimics or inhibitors followed by clonogenic survival assays. We also studied the effect of miR-590-5p on autophagy using electron microscopy and immunoblot analysis. In addition, the luciferase assay was used to identify potential targets. The radio-resistant PC cells exhibited decreased expression of miR-590-5p, with elevated autophagy against the parental cells. The over-expression of miR-590-5p inhibited radiation-mediated autophagy, while inhibitors induced autophagy in PC cells. The up-regulation of miR-590-5p enhanced the radio-sensitivity of PC cells. We confirmed ATG-3 as a target of miR-590-5p, whose levels were unregulated in radio-resistant cells. We also found that levels of ATG-3 were associated with autophagy. Expression of miR-590-5p inhibited radiation-mediated autophagy and enhanced the radio-sensitivity of PC cells.


2020 ◽  
Vol 48 (6) ◽  
pp. 030006052092961 ◽  
Author(s):  
Jun Jin ◽  
Feng Zhou ◽  
Jie Zhu ◽  
Weixian Zeng ◽  
Yong Liu

Objective Intracerebral hemorrhage (ICH) is a common cerebrovascular disease with high mortality and poor prognosis. Therefore, the biological function and underlying molecular mechanism of miR-26a in inflammatory injury following ICH was investigated. Methods The potential role of miR-26a was investigated in lipopolysaccharide (LPS)-treated microglial cells by quantitative real-time PCR. To explore the potential role of HMGA2 in the miR-26a-regulated inflammatory response, LPS-induced microglial cells were cotransfected with an miR-26a mimic and pcDNA-HMGA2. Then, lentivirus-mediated overexpression of an miR-26a mimic in mouse microglial cells was performed, and the effects of miR-26a treatment on IL-6, IL-1β, and TNF-α expression in the mouse brain, neurological behavior, and rotarod test performance of mice after ICH were observed. Results MiR-26a was significantly downregulated in LPS-treated microglia and ICH mouse models. MiR-26a markedly reduced IL-6, IL-1β, and TNF-α expression in LPS-treated microglial cells. Furthermore, HMGA2 was verified as a direct target of miR-26a. In vivo, miR-26a overexpression in mouse microglial cells significantly suppressed proinflammatory cytokine expression in mouse brains and markedly improved the neurological behavior and rotarod test performance of mice after ICH. Conclusion MiR-26a remarkably inhibited proinflammatory cytokine release by targeting HMGA2, indicating that miR-26a could protect against secondary brain injury following ICH.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Branka Vulesevic ◽  
Brian McNeill ◽  
Ferdinando Giacco ◽  
Michael Brownlee ◽  
Ross Milne ◽  
...  

Dicarbonyl stress (DS) caused by the accumulation of α-oxoaldehyde metabolites, like methylglyoxal (MG), leads to detrimental DNA and protein modifications. Under normal conditions, MG is detoxified by glyoxalase-1 (GLO1) and -2 enzymes, but this system fails in diabetes. While the role of DS in diabetic cardiomyopathy through changes in cardiomyocyte function has been well described, this study aimed to link DS with the development of endothelial dysfunction (ED) and early heart failure in diabetes. Transgenic mice that over-express GLO1 in endothelial cells (ECs) but not in cardiomyocytes, and their wild-type (WT) littermates were treated with STZ to induce hyperglycemia (WT-diabetic and GLO1-diabetic mice) or vehicle (non-diabetic controls). Hyperglycemia increased the circulating levels of ED markers in WT-diabetic (E-selectin 1.5-fold, ICAM 1.4-fold, and VCAM 1.1-fold), but not GLO1-diabetic mice. The number of vWF+ ECs in WT-diabetic hearts was reduced 2-fold compared to other groups, whereas GLO1 over-expression preserved capillary density. Cell death, determined by TUNEL staining, was greater in the hearts of WT-diabetic mice compared to all other groups. GLO1 over-expression resulted in reduced inflammation: TNF-α protein expression was increased in both diabetic groups (≥2-fold), but significantly less so in GLO1-diabetic mice (p=0.03). The preservation of ECs in GLO1-diabetic mice was associated with delayed signs of heart failure. At 4wk of hyperglycemia, WT-diabetic mice had reduced heart function compared to all other groups (p=0.04). At 8wk, cardiac function in GLO-diabetic mice was greater than in WT-diabetic mice, but both were reduced compared to non-diabetic controls (p=0.02; p=0.4). A possible mechanism for EC survival in GLO1 mice despite the presence of inflammation was examined in vitro using human aortic ECs. ECs exposed to high glucose or MG for 24h had increased apoptosis induced by TNF-α compared to cells treated only with TNF-α (by 2- and 3-fold, respectively), suggesting that reduced MG protects ECs from TNF-α mediated death. Taken together, these results suggest that DS in diabetes increases inflammation and ED, leading to the loss of ECs in the heart, which contributes to the development of heart failure.


2021 ◽  
Vol 85 (2) ◽  
pp. 378-385
Author(s):  
Ming Xu ◽  
Xiao-Yong Li ◽  
Laichun Song ◽  
Chao Tao ◽  
Jihui Fang ◽  
...  

ABSTRACT Apoptosis and inflammation were the main hallmarks of sepsis-induced cardiomyopathy (SIC). Yes-associated protein isoform 1 (Yap1) and miR-484 were involved in mitochondrial fission and apoptosis, especially proapoptotic roles in SIC. Here, we investigated the role of Yap1 and miR-484 in lipopolysaccharide (LPS)-treated H9c2 cells. Yap1 was downregulated, while miR-484 was elevated by LPS treatment. Cell counting kit-8, flow cytometry, western blotting, and ELISA showed that miR-484 inhibitor significantly improved cell viability, decreased apoptosis, suppressed NLRP3 inflammasome formation, and reduced secretion of inflammatory cytokines TNF-α, IL-1β, and IL-6. Yap1, directly targeted by miR-484 shown in the luciferase assay, was more like a compensatory regulator of LPS stimulation. Knockdown of Yap1 inverted the effects of miR-484 inhibitor, including decreased cell viability, and promoted apoptosis and inflammation. These revealed miR-484 directly targeted mRNA of Yap1 to inhibit cell viability, and promote apoptosis and inflammation in LPS-treated H9c2 cells.


2021 ◽  
Author(s):  
Yanli Tao ◽  
Huitao Zhu ◽  
Chengcheng Liu ◽  
Xiaoyan Sun ◽  
Tiejun Yuan ◽  
...  

Abstract Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a pathophysiologically complex disease process characterized by chronic inflammation of the nose and epithelial cell structure remodeling. Objectives: Studies have shown that the chromatin remodeling complex subunit Brg1 can interact with β-catenin, which plays an important role in cell proliferation and differentiation. However, the role of Brg1 and β-catenin in epithelial cells of chronic rhinitis and sinusitis remains unclear. Material and Methods: We detected the expression level of Brg1 in CRSwNP by qPCR, and observed the expression pattern of Brg1 in CRSwNP by immunohistochemistry and immunofluorescence. HNEpC cells were used to detect the expression changes of the two proteins after TNF-α stimulation. Results: In our study, the expression levels of Brg1 and β-catenin are significantly decreased in nasal mucosa of CRSwNP patients. To our interest, we also observed expression decrease and expression pattern changes of Brg1 and β-catenin by stimulating HNEpCs cells with TNF-α. Conclusions: This study shows that the expression of Brg1 and β-catenin may be related to the development of CRSwNPs.Subject classification codes: include these here if the journal requires them


2001 ◽  
Vol 120 (5) ◽  
pp. A541-A541
Author(s):  
K KITAMURA ◽  
J NIIKAWA ◽  
T IMAMURA ◽  
A TAKAHASHI ◽  
A IKEGAMI ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document