scholarly journals PLAC-24 Is a Cytoplasmic Dynein-Binding Protein That Is Recruited to Sites of Cell-Cell Contact

2002 ◽  
Vol 13 (5) ◽  
pp. 1722-1734 ◽  
Author(s):  
Sher Karki ◽  
Lee A. Ligon ◽  
Jamison DeSantis ◽  
Mariko Tokito ◽  
Erika L. F. Holzbaur

We screened for polypeptides that interact specifically with dynein and identified a novel 24-kDa protein (PLAC-24) that binds directly to dynein intermediate chain (DIC). PLAC-24 is not a dynactin subunit, and the binding of PLAC-24 to the dynein intermediate chain is independent of the association between dynein and dynactin. Immunocytochemistry using PLAC-24–specific polyclonal antibodies revealed a punctate perinuclear distribution of the polypeptide in fibroblasts and isolated epithelial cells. However, as epithelial cells in culture make contact with adjacent cells, PLAC-24 is specifically recruited to the cortex at sites of contact, where the protein colocalizes with components of the adherens junction. Disruption of the cellular cytoskeleton with latrunculin or nocodazole indicates that the localization of PLAC-24 to the cortex is dependent on intact actin filaments but not on microtubules. Overexpression of β-catenin also leads to a loss of PLAC-24 from sites of cell-cell contact. On the basis of these data and the recent observation that cytoplasmic dynein is also localized to sites of cell-cell contact in epithelial cells, we propose that PLAC-24 is part of a multiprotein complex localized to sites of intercellular contact that may function to tether microtubule plus ends to the actin-rich cellular cortex.

2001 ◽  
Vol 114 (23) ◽  
pp. 4197-4206
Author(s):  
Annette M. Gonzalez ◽  
Carol Otey ◽  
Magnus Edlund ◽  
Jonathan C. R. Jones

Hemidesmosomes are multimeric protein complexes that attach epithelial cells to their underlying matrix and serve as cell surface anchorage sites for the keratin cytoskeleton. Two hemidesmosome components, the α6β4 integrin heterodimer and a human autoantigen termed BP180, are transmembrane proteins that link the extracellular matrix to the keratin network in cells. Here, we report that actinin-4, an actin-bundling protein, is a potential binding partner for BP180. Using yeast two-hybrid, we have mapped the binding site for BP180 to the C-terminal region of actinin-4. This site contains two EF-hand, Ca2+ regulation domains and shares 87% sequence homology with the same region in actinin-1. Consistent with this, BP180 can bind actinin-1 in both the yeast two-hybrid assay and in immunoprecipitation assays. To determine whether the EF-hand domain is a consensus binding sequence for BP180, we tested whether other proteins with this domain bind BP180. None of the proteins tested including calmodulin, with 4 EF-hand domains, and myosin regulatory light chain, with 1 EF-hand domain, interacts with BP180 in yeast two-hybrid system and immunoprecipitation studies, suggesting that the interaction between BP180 and actinin family members is specific. We have compared the distribution of actinin-1 and actinin-4 with that of BP180 in MCF-10A and pp126 cells. Surprisingly, BP180 localizes not only to sites of cell-substratum interaction, but is also present at sites of cell-cell contacts where it co-distributes with both actinin-1 and actinin-4 as well as other adherens junction proteins. In oral tissues, BP180 is present along the basement membrane and at cell-cell contact sites in basal epithelial cells where it co-distributes with adherens junction proteins. Since BP180 antibodies inhibit association of junction proteins at sites of cell-cell contact in oral keratinocytes, these results suggest that BP180 may play a role in establishing cell-cell interactions. We discuss a role for BP180 in crosstalk between cell-matrix and cell-cell junctions.


2012 ◽  
Vol 23 (11) ◽  
pp. 2076-2091 ◽  
Author(s):  
Qingwen Wan ◽  
Jing Liu ◽  
Zhen Zheng ◽  
Huabin Zhu ◽  
Xiaogang Chu ◽  
...  

Cell–cell contact formation following cadherin engagement requires actomyosin contraction along the periphery of cell–cell contact. The molecular mechanisms that regulate myosin activation during this process are not clear. In this paper, we show that two polarity proteins, partitioning defective 3 homologue (Par3) and mammalian homologues of Drosophila Lethal (2) Giant Larvae (Lgl1/2), antagonize each other in modulating myosin II activation during cell–cell contact formation in Madin-Darby canine kidney cells. While overexpression of Lgl1/2 or depletion of endogenous Par3 leads to enhanced myosin II activation, knockdown of Lgl1/2 does the opposite. Intriguingly, altering the counteraction between Par3 and Lgl1/2 induces cell–cell internalization during early cell–cell contact formation, which involves active invasion of the lateral cell–cell contact underneath the apical-junctional complexes and requires activation of the Rho–Rho-associated, coiled-coil containing protein kinase (ROCK)–myosin pathway. This is followed by predominantly nonapoptotic cell-in-cell death of the internalized cells and frequent aneuploidy of the host cells. Such effects are reminiscent of entosis, a recently described process observed when mammary gland epithelial cells were cultured in suspension. We propose that entosis could occur without matrix detachment and that overactivation of myosin or unbalanced myosin activation between contacting cells may be the driving force for entosis in epithelial cells.


2001 ◽  
Vol 276 (17) ◽  
pp. 14067-14074 ◽  
Author(s):  
Yu-Keung Mok ◽  
Kevin W.-H. Lo ◽  
Mingjie Zhang

2015 ◽  
Vol 208 (6) ◽  
pp. 683-692 ◽  
Author(s):  
Wenjing Li ◽  
Peishan Yi ◽  
Guangshuo Ou

Cilium formation and maintenance require intraflagellar transport (IFT). Although much is known about kinesin-2–driven anterograde IFT, the composition and regulation of retrograde IFT-specific dynein remain elusive. Components of cytoplasmic dynein may participate in IFT; however, their essential roles in cell division preclude functional studies in postmitotic cilia. Here, we report that inducible expression of the clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system in Caenorhabditis elegans generated conditional mutations in IFT motors and particles, recapitulating ciliary defects in their null mutants. Using this method to bypass the embryonic requirement, we show the following: the dynein intermediate chain, light chain LC8, and lissencephaly-1 regulate retrograde IFT; the dynein light intermediate chain functions in dendrites and indirectly contributes to ciliogenesis; and the Tctex and Roadblock light chains are dispensable for cilium assembly. Furthermore, we demonstrate that these components undergo biphasic IFT with distinct transport frequencies and turnaround behaviors. Together, our results suggest that IFT–dynein and cytoplasmic dynein have unique compositions but also share components and regulatory mechanisms.


1997 ◽  
Vol 136 (4) ◽  
pp. 919-934 ◽  
Author(s):  
Jani E. Lewis ◽  
James K. Wahl ◽  
Kristin M. Sass ◽  
Pamela J. Jensen ◽  
Keith R. Johnson ◽  
...  

Squamous epithelial cells have both adherens junctions and desmosomes. The ability of these cells to organize the desmosomal proteins into a functional structure depends upon their ability first to organize an adherens junction. Since the adherens junction and the desmosome are separate structures with different molecular make up, it is not immediately obvious why formation of an adherens junction is a prerequisite for the formation of a desmosome. The adherens junction is composed of a transmembrane classical cadherin (E-cadherin and/or P-cadherin in squamous epithelial cells) linked to either β-catenin or plakoglobin, which is linked to α-catenin, which is linked to the actin cytoskeleton. The desmosome is composed of transmembrane proteins of the broad cadherin family (desmogleins and desmocollins) that are linked to the intermediate filament cytoskeleton, presumably through plakoglobin and desmoplakin. To begin to study the role of adherens junctions in the assembly of desmosomes, we produced an epithelial cell line that does not express classical cadherins and hence is unable to organize desmosomes, even though it retains the requisite desmosomal components. Transfection of E-cadherin and/or P-cadherin into this cell line did not restore the ability to organize desmosomes; however, overexpression of plakoglobin, along with E-cadherin, did permit desmosome organization. These data suggest that plakoglobin, which is the only known common component to both adherens junctions and desmosomes, must be linked to E-cadherin in the adherens junction before the cell can begin to assemble desmosomal components at regions of cell–cell contact. Although adherens junctions can form in the absence of plakoglobin, making use only of β-catenin, such junctions cannot support the formation of desmosomes. Thus, we speculate that plakoglobin plays a signaling role in desmosome organization.


1999 ◽  
Vol 9 (8) ◽  
pp. 425-428 ◽  
Author(s):  
Lisbeth Berrueta ◽  
Jennifer S. Tirnauer ◽  
Scott C. Schuyler ◽  
David Pellman ◽  
Barbara E. Bierer

1989 ◽  
Vol 109 (3) ◽  
pp. 1047-1056 ◽  
Author(s):  
J M Anderson ◽  
C M Van Itallie ◽  
M D Peterson ◽  
B R Stevenson ◽  
E A Carew ◽  
...  

We previously identified and characterized ZO-1 as a peripheral membrane protein specifically associated with the cytoplasmic surface of tight junctions. Here we describe the identification of partial cDNA sequences encoding rat and human ZO-1 and their use to study the assembly of tight junctions in the Caco-2 human intestinal epithelial cell line. A rat cDNA was isolated from a lambda-gtll expression library by screening with mAbs. Polyclonal antibodies were raised to cDNA-encoded fusion protein; several properties of these antibodies support this cDNA as encoding ZO-1. Expression of ZO-1 mRNA occurs in the rat and Caco-2 cells with a major transcript of approximately 7.5 kb. To disrupt tight junctions and study the subsequent process of assembly, Caco-2 cells were grown in suspension for 48 h in Ca++/Mg++-free spinner medium during which time they lose cell-cell contacts, become round, and by immunofluorescence microscopy show diffuse and speckled localization of ZO-1. Within hours of replating at confluent density in Ca++/Mg++-containing media, attached cells show discrete localization of ZO-1 at cell-cell contacts. Within 2 d, fully confluent monolayers form, and ZO-1 localizes in a continuous gasket-like fashion circumscribing all cells. ZO-1 mRNA levels are highest in cells in spinner culture, and upon replating rapidly fall and plateau at approximately 10% of initial levels after 2-3 wk in culture. ZO-1 protein levels are lowest in contact-free cells and rise five- to eightfold over the same period. In contrast, mRNA levels for sucrase-isomaltase, an apical membrane hydrolase, increase only after a confluent monolayer forms. Thus, in this model of contact-dependent assembly of the tight junction, there is both a rapid assembly beginning upon cell-cell contact, as well as a long-term modulation involving changes in expression of ZO-1 mRNA and protein levels.


2015 ◽  
Vol 210 (2) ◽  
pp. 333-346 ◽  
Author(s):  
Pierre-Olivier Strale ◽  
Laurence Duchesne ◽  
Grégoire Peyret ◽  
Lorraine Montel ◽  
Thao Nguyen ◽  
...  

Oligomerization of cadherins could provide the stability to ensure tissue cohesion. Cadherins mediate cell–cell adhesion by forming trans-interactions. They form cis-interactions whose role could be essential to stabilize intercellular junctions by shifting cadherin clusters from a fluid to an ordered phase. However, no evidence has been provided so far for cadherin oligomerization in cellulo and for its impact on cell–cell contact stability. Visualizing single cadherins within cell membrane at a nanometric resolution, we show that E-cadherins arrange in ordered clusters, providing the first demonstration of the existence of oligomeric cadherins at cell–cell contacts. Studying the consequences of the disruption of the cis-interface, we show that it is not essential for adherens junction formation. Its disruption, however, increased the mobility of junctional E-cadherin. This destabilization strongly affected E-cadherin anchoring to actin and cell–cell rearrangement during collective cell migration, indicating that the formation of oligomeric clusters controls the anchoring of cadherin to actin and cell–cell contact fluidity.


Sign in / Sign up

Export Citation Format

Share Document