scholarly journals Regulation of myosin activation during cell–cell contact formation by Par3-Lgl antagonism: entosis without matrix detachment

2012 ◽  
Vol 23 (11) ◽  
pp. 2076-2091 ◽  
Author(s):  
Qingwen Wan ◽  
Jing Liu ◽  
Zhen Zheng ◽  
Huabin Zhu ◽  
Xiaogang Chu ◽  
...  

Cell–cell contact formation following cadherin engagement requires actomyosin contraction along the periphery of cell–cell contact. The molecular mechanisms that regulate myosin activation during this process are not clear. In this paper, we show that two polarity proteins, partitioning defective 3 homologue (Par3) and mammalian homologues of Drosophila Lethal (2) Giant Larvae (Lgl1/2), antagonize each other in modulating myosin II activation during cell–cell contact formation in Madin-Darby canine kidney cells. While overexpression of Lgl1/2 or depletion of endogenous Par3 leads to enhanced myosin II activation, knockdown of Lgl1/2 does the opposite. Intriguingly, altering the counteraction between Par3 and Lgl1/2 induces cell–cell internalization during early cell–cell contact formation, which involves active invasion of the lateral cell–cell contact underneath the apical-junctional complexes and requires activation of the Rho–Rho-associated, coiled-coil containing protein kinase (ROCK)–myosin pathway. This is followed by predominantly nonapoptotic cell-in-cell death of the internalized cells and frequent aneuploidy of the host cells. Such effects are reminiscent of entosis, a recently described process observed when mammary gland epithelial cells were cultured in suspension. We propose that entosis could occur without matrix detachment and that overactivation of myosin or unbalanced myosin activation between contacting cells may be the driving force for entosis in epithelial cells.

2008 ◽  
Vol 314 (17) ◽  
pp. 3187-3197 ◽  
Author(s):  
M PLAYFORD ◽  
K VADALI ◽  
X CAI ◽  
K BURRIDGE ◽  
M SCHALLER

2018 ◽  
Vol 115 (42) ◽  
pp. 10678-10683 ◽  
Author(s):  
David Li ◽  
Yu-li Wang

Contact inhibition of locomotion (CIL), the repulsive response of cells upon cell–cell contact, has been the predominant paradigm for contact-mediated responses. However, it is difficult for CIL alone to account for the complex behavior of cells within a multicellular environment, where cells often migrate in cohorts such as sheets, clusters, and streams. Although cell–cell adhesion and mechanical interactions play a role, how individual cells coordinate their migration within a multicellular environment remains unclear. Using micropatterned substrates to guide cell migration and manipulate cell–cell contact, we show that contacts between different regions of cells elicit different responses. Repulsive responses were limited to interaction with the head of a migrating cell, while contact with the tail of a neighboring cell promoted migration toward the tail. The latter behavior, termed contact following of locomotion (CFL), required the Wnt signaling pathway. Inhibition of the Wnt pathway disrupted not only CFL but also collective migration of epithelial cells, without affecting the migration of individual cells. In contrast, inhibition of myosin II with blebbistatin disrupted the migration of both individual epithelial cells and collectives. We propose that CFL, in conjunction with CIL, plays a major role in guiding and coordinating cell migration within a multicellular environment.


2002 ◽  
Vol 13 (5) ◽  
pp. 1722-1734 ◽  
Author(s):  
Sher Karki ◽  
Lee A. Ligon ◽  
Jamison DeSantis ◽  
Mariko Tokito ◽  
Erika L. F. Holzbaur

We screened for polypeptides that interact specifically with dynein and identified a novel 24-kDa protein (PLAC-24) that binds directly to dynein intermediate chain (DIC). PLAC-24 is not a dynactin subunit, and the binding of PLAC-24 to the dynein intermediate chain is independent of the association between dynein and dynactin. Immunocytochemistry using PLAC-24–specific polyclonal antibodies revealed a punctate perinuclear distribution of the polypeptide in fibroblasts and isolated epithelial cells. However, as epithelial cells in culture make contact with adjacent cells, PLAC-24 is specifically recruited to the cortex at sites of contact, where the protein colocalizes with components of the adherens junction. Disruption of the cellular cytoskeleton with latrunculin or nocodazole indicates that the localization of PLAC-24 to the cortex is dependent on intact actin filaments but not on microtubules. Overexpression of β-catenin also leads to a loss of PLAC-24 from sites of cell-cell contact. On the basis of these data and the recent observation that cytoplasmic dynein is also localized to sites of cell-cell contact in epithelial cells, we propose that PLAC-24 is part of a multiprotein complex localized to sites of intercellular contact that may function to tether microtubule plus ends to the actin-rich cellular cortex.


2007 ◽  
Vol 328 (2) ◽  
pp. 391-400 ◽  
Author(s):  
Shuang-yan Gao ◽  
Chun-yu Li ◽  
Tetsuya Shimokawa ◽  
Takehiro Terashita ◽  
Seiji Matsuda ◽  
...  

2006 ◽  
Vol 74 (5) ◽  
pp. 2767-2776 ◽  
Author(s):  
Ying Du ◽  
Cindy Grove Arvidson

ABSTRACT Neisseria gonorrhoeae (gonococcus [GC]), is highly adapted to the human host, the only known reservoir for gonococcal infection. However, since it is sexually transmitted, infection of a new host likely requires a regulatory response on the part of the gonococcus to respond to this significant change in environment. We previously showed that adherence of gonococci to epithelial cells results in changes of gene expression in the bacteria that presumably prepare them for subsequent steps in the infection process. Expression of the heat shock sigma factor gene, rpoH, was shown to be important for the invasion step, as gonococci depleted for rpoH were reduced in their ability to invade epithelial cells. Here, we show that of the genes induced in adherent gonococci, two are part of the gonococcal RpoH regulon. When RpoH is depleted, expression of these genes is no longer induced by host cell contact, indicating that RpoH is mediating the host cell induction response of these genes. One RpoH-dependent gene, NGO0376, is shown to be important for invasion of epithelial cells, consistent with earlier observations that RpoH is necessary for this step of infection. Two genes, NGO1684 and NGO0340, while greatly induced by host cell contact, were found to be RpoH independent, indicating that more than one regulator is involved in the response to host cell contact. Furthermore, NGO0340, but not NGO1684, was shown to be important for both adherence and invasion of epithelial cells, suggesting a complex regulatory network in the response of gonococci to contact with host cells.


2005 ◽  
Vol 68 (2) ◽  
pp. 542-551 ◽  
Author(s):  
Eishin Yaoita ◽  
Hidetake Kurihara ◽  
Yutaka Yoshida ◽  
Tsutomu Inoue ◽  
Asako Matsuki ◽  
...  

1987 ◽  
Vol 104 (6) ◽  
pp. 1527-1537 ◽  
Author(s):  
W J Nelson ◽  
P J Veshnock

During growth of Madin-Darby canine kidney (MDCK) epithelial cells, there is a dramatic change in the stability, biophysical properties, and distribution of the membrane skeleton (fodrin) which coincides temporally and spatially with the development of the polarized distribution of the Na+, K+-ATPase, a marker protein of the basolateral domain of the plasma membrane. These changes occur maximally upon the formation of a continuous monolayer of cells, indicating that extensive cell-cell contact may play an important role in the organization of polarized MDCK cells (Nelson, W. J., and P. J. Veshnock, 1986, J. Cell Biol., 103:1751-1766). To directly analyze the role of cell-cell contact in these events, we have used an assay in which the organization of fodrin and membrane proteins is analyzed in confluent monolayers of MDCK cells in the absence or presence of cell-cell contact by adjusting the concentration Ca++ in the growth medium. Our results on the stability and solubility properties of fodrin reported here show directly that there is a positive correlation between cell-cell contact and increased stability and insolubility of fodrin. Furthermore, we show that fodrin can be recruited from an unstable pool of protein to a stable pool during induction of cell-cell contact; significantly, the stabilization of fodrin is not affected by the addition of cyclohexamide, indicating that proteins normally synthesized during the induction of cell-cell contact are not required. Together these results indicate that cell-cell contact may play an important role in the development of polarity in MDCK cells by initiating the formation of a stable, insoluble matrix of fodrin with preexisting (membrane) proteins at the cell periphery. This matrix may function subsequently to trap proteins targeted to the membrane, resulting in the maintenance of membrane domains.


Sign in / Sign up

Export Citation Format

Share Document