scholarly journals Basolateral Localization of the Caenorhabditis elegans Epidermal Growth Factor Receptor in Epithelial Cells by the PDZ Protein LIN-10

1999 ◽  
Vol 10 (6) ◽  
pp. 2087-2100 ◽  
Author(s):  
Charles W. Whitfield ◽  
Claire Bénard ◽  
Tom Barnes ◽  
S. Hekimi ◽  
Stuart K. Kim

In Caenorhabditis elegans, the EGF receptor (encoded by let-23) is localized to the basolateral membrane domain of the epithelial vulval precursor cells, where it acts through a conserved Ras/MAP kinase signaling pathway to induce vulval differentiation. lin-10 acts in LET-23 receptor tyrosine kinase basolateral localization, because lin-10mutations result in mislocalization of LET-23 to the apical membrane domain and cause a signaling defective (vulvaless) phenotype. We demonstrate that the previous molecular identification oflin-10 was incorrect, and we identify a new gene corresponding to the lin-10 genetic locus.lin-10 encodes a protein with regions of similarity to mammalian X11/mint proteins, containing a phosphotyrosine-binding and two PDZ domains. A nonsense lin-10 allele that truncates both PDZ domains only partially reduces lin-10 gene activity, suggesting that these protein interaction domains are not essential for LIN-10 function in vulval induction. Immunocytochemical experiments show that LIN-10 is expressed in vulval epithelial cells and in neurons. LIN-10 is present at low levels in the cytoplasm and at the plasma membrane and at high levels at or near the Golgi. LIN-10 may function in secretion of LET-23 to the basolateral membrane domain, or it may be involved in tethering LET-23 at the basolateral plasma membrane once it is secreted.

2018 ◽  
Vol 314 (5) ◽  
pp. C519-C533 ◽  
Author(s):  
Inga Baasch Christensen ◽  
Esben Nees Mogensen ◽  
Helle Hasager Damkier ◽  
Jeppe Praetorius

The choroid plexus epithelial cells (CPECs) belong to a small group of polarized cells, where the Na+-K+-ATPase is expressed in the luminal membrane. The basic polarity of the cells is, therefore, still debated. We investigated the subcellular distribution of an array of proteins known to play fundamental roles either in establishing and maintaining basic cell polarity or in the polarized delivery and recycling of plasma membrane proteins. Immunofluorescence histochemical analysis was applied to determine the subcellular localization of apical and basolateral membrane determinants. Mass spectrometry analysis of CPECs isolated by fluorescence-activated cell sorting was applied to determine the expression of specific forms of the proteins. CPECs mainly express the cell-adhesive P-cadherin, which is localized to the lateral membranes. Proteins belonging to the Crumbs and partitioning defective (Par) protein complexes were all localized to the luminal membrane domain. Par-1 and the Scribble complex were localized to the basolateral membrane domain. Lethal(2) giant larvae homolog 2 (Lgl2) labeling was preferentially observed in the luminal membrane domain. Phosphatidylinositol 3,4,5-trisphosphate (PIP3) was immunolocalized to the basolateral membrane domain, while phosphatidylinositol 4,5-bisphosphate (PIP2) staining was most prominent in the luminal membrane domain along with the PIP3 phosphatase, Pten. The apical target-SNARE syntaxin-3 and the basolateral target-SNARE syntaxin-4 were both localized to the apical membrane domain in CPECs, which lack cellular expression of the clathrin adaptor protein AP-1B for basolateral protein recycling. In conclusion, the CPECs are conventionally polarized, but express P-cadherin at cell-cell contacts, and Lgl2 and syntaxin-4 in the luminal plasma membrane domain.


2000 ◽  
Vol 11 (11) ◽  
pp. 3873-3883 ◽  
Author(s):  
Maryse Bailly ◽  
Jeffrey Wyckoff ◽  
Boumediene Bouzahzah ◽  
Ross Hammerman ◽  
Vonetta Sylvestre ◽  
...  

To determine the distribution of the epidermal growth factor (EGF) receptor (EGFR) on the surface of cells responding to EGF as a chemoattractant, an EGFR-green fluorescent protein chimera was expressed in the MTLn3 mammary carcinoma cell line. The chimera was functional and easily visualized on the cell surface. In contrast to other studies indicating that the EGFR might be localized to certain regions of the plasma membrane, we found that the chimera is homogeneously distributed on the plasma membrane and becomes most concentrated in vesicles after endocytosis. In spatial gradients of EGF, endocytosed receptor accumulates on the upgradient side of the cell. Visualization of the binding of fluorescent EGF to cells reveals that the affinity properties of the receptor, together with its expression level on cells, can provide an initial amplification step in spatial gradient sensing.


2012 ◽  
Vol 23 (22) ◽  
pp. 4465-4471 ◽  
Author(s):  
R. F. Andrew McKinley ◽  
Tony J. C. Harris

Polarity landmarks guide epithelial development. In the early Drosophila ectoderm, the scaffold protein Bazooka (Drosophila PAR-3) forms apicolateral landmarks to direct adherens junction assembly. However, it is unclear how Bazooka becomes polarized. We report two mechanisms acting in concert to displace Bazooka from the basolateral membrane. As cells form during cellularization, basally localized Bazooka undergoes basal-to-apical transport. Bazooka requires its three postsynaptic density 95, discs large, zonula occludens-1 (PDZ) domains to engage the transport mechanism, but with the PDZ domains deleted, basolateral displacement still occurs by gastrulation. Basolateral PAR-1 activity appears to act redundantly with the transport mechanism. Knockdown of PAR-1 sporadically destabilizes cellularization furrows, but basolateral displacement of Bazooka still occurs by gastrulation. In contrast, basolateral Bazooka displacement is blocked with disruption of both the transport mechanism and phosphorylation by PAR-1. Thus Bazooka is polarized through a combination of transport and PAR-1–induced dispersion from basolateral membranes. Our work complements recent findings in Caenorhabditis elegans and thus suggests the coupling of transport and dispersion is a common protein polarization strategy.


1999 ◽  
Vol 276 (1) ◽  
pp. C91-C101 ◽  
Author(s):  
Kurt Amsler ◽  
Scott K. Kuwada

Signal transduction from receptors is mediated by the interaction of activated receptors with proximate downstream signaling proteins. In polarized epithelial cells, the membrane is divided into subdomains: the apical and basolateral membranes. Membrane receptors may be present in one or both subdomains. Using a combination of immunoprecipitation and Western blot analyses, we tested the hypothesis that a tyrosine kinase growth factor receptor, epidermal growth factor receptor (EGFR), interacts with distinct signaling proteins when present at the apical vs. basolateral membrane of a polarized renal epithelial cell. We report here that tyrosine phosphorylation of phospholipase C-γ (PLC-γ) was induced only when basolateral EGFR was activated. In contrast, tyrosine phosphorylation of several other signaling proteins was increased by activation of receptor at either surface. All signaling proteins were distributed diffusely throughout the cytoplasm; however, PLC-γ protein also displayed a concentration at lateral cell borders. These results demonstrate that in polarized epithelial cells the array of signaling pathways initiated by activation of a membrane receptor is defined, at least in part, by the membrane location of the receptor.


2016 ◽  
Vol 310 (9) ◽  
pp. C764-C772 ◽  
Author(s):  
Ensaf Almomani ◽  
Rawad Lashhab ◽  
R. Todd Alexander ◽  
Emmanuelle Cordat

Mutations in the SLC4A1 gene coding for kidney anion exchanger 1 (kAE1) cause distal renal tubular acidosis (dRTA). We investigated the fate of the most common truncated dominant dRTA mutant kAE1 R901X. In renal epithelial cells, we found that kAE1 R901X is less abundant than kAE1 wild-type (WT) at the plasma membrane. Although kAE1 WT and kAE1 R901X have similar half-lives, the decreased abundance of kAE1 R901X at the surface is due to an increased endocytosis rate and a decreased recycling rate of endocytosed proteins. We propose that, in polarized renal epithelial cells, the apically mistargeted kAE1 R901X mutant is endocytosed faster than kAE1 WT and its recycling to the basolateral membrane is delayed. This resets the equilibrium, such that kAE1 R901X resides predominantly in an endomembrane compartment, thereby likely participating in development of dRTA disease.


2010 ◽  
Vol 22 (9) ◽  
pp. 110
Author(s):  
R. J. Madawala ◽  
C. R. Murphy

Rat uterine epithelial cells undergo many changes during early pregnancy in order to become receptive to blastocyst implantation. These changes include basolateral folding and the presence of vesicles of various sizes which are at their greatest number during the pre-implantation period. The present study investigated the possible role that caveolin 1 and 2 plays in this remodelling specifically days 1, 3, 6, 7, and 9 of pregnancy. Caveolin is a major protein in omega shaped invaginations of the plasma membrane called caveolae that are considered to be specialised plasma membrane subdomains. Caveolae are rich in cholesterol, glycosphingolipids, and GPI anchored proteins and are involved in endocytosis and membrane curvature. Immunofluorescence microscopy has shown caveolin 1 and 2 on day 1 of pregnancy are localised to the cytoplasm of luminal uterine epithelial cells, and by day 6 of pregnancy (the time of implantation), it concentrates basally. By day 9 of pregnancy, expression of both caveolin 1 and 2 in luminal uterine epithelia is cytoplasmic as seen on day 1 of pregnancy. A corresponding increase in protein expression of caveolin 1 on day 6 of pregnancy in luminal uterine epithelia was observed. Interestingly however, caveolin 2 protein expression decreases at the time of implantation as found by western blot analysis. Both caveolin 1 and 2 were localised to blood vessels within the endometrium and myometrium and also the muscle of the myometrium in all days of pregnancy studied. In addition, both caveolin 1 and 2 were absent from glandular epithelium, which is interesting considering that they do not undergo the plasma membrane transformation. The localisation and expression of caveolin 1 and 2 in rat luminal uterine epithelium at the time of implantation suggest possible roles in trafficking of cholesterol and/or various proteins for either degradation or relocation. Caveolins may contribute to the morphology of the basolateral membrane seen on day 6 of pregnancy. All of which may play an important role during successful blastocyst implantation.


2005 ◽  
Vol 16 (12) ◽  
pp. 5832-5842 ◽  
Author(s):  
Camilla Haslekås ◽  
Kamilla Breen ◽  
Ketil W. Pedersen ◽  
Lene E. Johannessen ◽  
Espen Stang ◽  
...  

By constructing stably transfected cells harboring the same amount of epidermal growth factor (EGF) receptor (EGFR), but with increasing overexpression of ErbB2, we have demonstrated that ErbB2 efficiently inhibits internalization of ligand-bound EGFR. Apparently, ErbB2 inhibits internalization of EGF-bound EGFR by constitutively driving EGFR-ErbB2 hetero/oligomerization. We have demonstrated that ErbB2 does not inhibit phosphorylation or ubiquitination of the EGFR. Our data further indicate that the endocytosis deficiency of ErbB2 and of EGFR-ErbB2 heterodimers/oligomers cannot be explained by anchoring of ErbB2 to PDZ-containing proteins such as Erbin. Instead, we demonstrate that in contrast to EGFR homodimers, which are capable of inducing new clathrin-coated pits in serum-starved cells upon incubation with EGF, clathrin-coated pits are not induced upon activation of EGFR-ErbB2 heterodimers/oligomers.


2019 ◽  
Author(s):  
Claudia Andrea Vilchis-Nestor ◽  
María Luisa Roldán ◽  
Teresita Padilla-Benavides ◽  
Liora Shoshani

AbstractAdhesion is an important characteristic of epithelial cells to provide a crucial barrier to pathogens and substances. In polarized epithelial cells, cell-adhesion depends on tight junctions, adherent junctions and the Na+,K+-ATPase. All these are located in the basolateral membrane of the cells. The hormone ouabain, a cardiotonic steroid, binds to the α subunit of the Na+,K+-ATPase, and inhibits the pump activity when used at above μM concentrations. At physiological nM concentrations, ouabain affects the adhesive properties of epithelial cells by inducing the expression of cell adhesion molecules through activation of signaling pathways associated to the α subunit. Our group showed that non-adherent CHO cells transfected with the canine β1subunit become adhesive, and that homotypic interactions between β1subunits of the Na+,K+-ATPase occur between neighboring epithelial cells. Therefore, in this study we investigated whether the adhesion between β1subunits was also affected by ouabain. We used CHO fibroblasts stably expressing the β1subunit of the Na+,K+-ATPase (CHO-β1) and studied the effect of ouabain on cell adhesion. Aggregation assays showed that ouabain increased the adhesion between CHO-β1cells. Immunofluorescence and biotinylation assays showed that ouabain (50 nM) increases the expression of the β1 subunit of the Na+,K+-ATPase at the cell membrane. We also screened the effect of ouabain on activation of signaling pathways in CHO-β1cells, and their effect on cell adhesion. We found that c-Src, is activated by ouabain and is therefore likely to regulate the adhesive properties of CHO-β1cells. Collectively, our findings suggest that the β1subunits adhesion is modulated by the levels of expression and activation of the Na+,K+-ATPase at the plasma membrane, which is regulated by ouabain.


1995 ◽  
Vol 108 (7) ◽  
pp. 2609-2617 ◽  
Author(s):  
A. Guerrier ◽  
P. Fonlupt ◽  
I. Morand ◽  
R. Rabilloud ◽  
C. Audebet ◽  
...  

Epithelial cells of the thyroid gland present an uncommon connexin expression pattern, they coexpress connexin32 and connexin43. In the present work, we have analyzed the membrane distribution of these two connexins to determine: (i) whether they co-assemble in the same gap junctions or form separate gap junctions; and (ii) whether their location is somehow related to the thyroid cell polarity. Immunofluorescence analyses of the localization of the two connexins in thyroid tissue sections revealed that connexin32 and connexin43 are located in different regions of the plasma membrane. We further analyzed the location of each of the two connexins with regard to that of the tight junction-associated protein, ZO1. Laser scanning confocal microscope observations of connexin32 or connexin43 and ZO1 double-immunolabelled thyroid cells, gave evidence for a separate localization of gap junctions made of each of these two connexins. Connexin32 gap junctions appeared as fluorescent spots scattered over the lateral membrane domain, while connexin43 gap junctions formed a meshed network superimposable with that of tight junctions in the subapical region of the cells. Western blot analyses of the distribution of connexins in thyroid plasma membrane subfractions obtained by ultracentrifugation on a sucrose gradient led to the identification of membrane sub-populations enriched in either connexin32 gap junctions or connexin43 gap junctions. Connexin32 gap junctions and connexin43 gap junctions were found to differ in their resistance to solubilization by N-lauroylsarcosine. Increasing concentrations of this detergent from 0.12% to 0.42% caused a progressive solubilization of connexin43 while connexin32 remained membrane-bound.(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 153 (3) ◽  
pp. 599-612 ◽  
Author(s):  
Miho Matsuda ◽  
Hugh F. Paterson ◽  
Rosie Rodriguez ◽  
Amanda C. Fensome ◽  
Moira V. Ellis ◽  
...  

The translocation of fluorescently tagged PLCγ and requirements for this process in cells stimulated with EGF were analyzed using real time fluorescence microscopy applied for the first time to monitor growth factor receptor–effector interactions. The translocation of PLCγ to the plasma membrane required the functional Src homology 2 domains and was not affected by mutations in the pleckstrin homology domain or inhibition of phosphatidylinositol (PI) 3-kinase. An array of domains specific for PLCγ isoforms was sufficient for this translocation. The dynamics of translocation to the plasma membrane and redistribution of PLCγ, relative to localization of the EGF receptor and PI 4,5-biphosphate (PI 4,5-P2), were shown. Colocalization with the receptor was observed in the plasma membrane and in membrane ruffles where PI 4,5-P2 substrate could also be visualized. At later times, internalization of PLCγ, which could lead to separation from the substrate, was observed. The data support a direct binding of PLCγ to the receptor as the main site of the plasma membrane recruitment. The presence of PLCγ in membrane structures and its access to the substrate appear to be transient and are followed by a rapid incorporation into intracellular vesicles, leading to downregulation of the PLC activity.


Sign in / Sign up

Export Citation Format

Share Document