scholarly journals Dual Requirement for Rho and Protein Kinase C in Direct Activation of Phospholipase D1 Through G Protein-coupled Receptor Signaling

2000 ◽  
Vol 11 (12) ◽  
pp. 4359-4368 ◽  
Author(s):  
Guangwei Du ◽  
Yelena M. Altshuller ◽  
Yong Kim ◽  
Jung Min Han ◽  
Sung Ho Ryu ◽  
...  

G protein-coupled and tyrosine kinase receptor activation of phospholipase D1 (PLD1) play key roles in agonist-stimulated cellular responses such as regulated exocytosis, actin stress fiber formation, and alterations in cell morphology and motility. Protein Kinase C, ADP-ribosylation factor (ARF), and Rho family members activate PLD1 in vitro; however, the actions of the stimulators on PLD1 in vivo have been proposed to take place through indirect pathways. We have used the yeast split-hybrid system to generate PLD1 alleles that fail to bind to or to be activated by RhoA but that retain wild-type responses to ARF and PKC. These alleles then were employed in combination with alleles unresponsive to PKC or to both stimulators to examine the activation of PLD1 by G protein-coupled receptors. Our results demonstrate that direct stimulation of PLD1 in vivo by RhoA (and by PKC) is critical for significant PLD1 activation but that PLD1 subcellular localization and regulated phosphorylation occur independently of these stimulatory pathways.


2001 ◽  
Vol 357 (2) ◽  
pp. 587-592 ◽  
Author(s):  
Nickolai O. DULIN ◽  
Sergei N. ORLOV ◽  
Chad M. KITCHEN ◽  
Tatyana A. VOYNO-YASENETSKAYA ◽  
Joseph M. MIANO

A hallmark of cultured smooth muscle cells (SMCs) is the rapid down-regulation of several lineage-restricted genes that define their in vivo differentiated phenotype. Identifying factors that maintain an SMC differentiated phenotype has important implications in understanding the molecular underpinnings governing SMC differentiation and their subversion to an altered phenotype in various disease settings. Here, we show that several G-protein coupled receptors [α-thrombin, lysophosphatidic acid and angiotensin II (AII)] increase the expression of smooth muscle calponin (SM-Calp) in rat and human SMC. The increase in SM-Calp protein appears to be selective for G-protein-coupled receptors as epidermal growth factor was without effect. Studies using AII showed a 30-fold increase in SM-Calp protein, which was dose- and time-dependent and mediated by the angiotensin receptor-1 (AT1 receptor). The increase in SM-Calp protein with AII was attributable to transcriptional activation of SM-Calp based on increases in steady-state SM-Calp mRNA, increases in SM-Calp promoter activity and complete abrogation of protein induction with actinomycin D. To examine the potential role of extracellular signal-regulated kinase (Erk1/2), protein kinase B, p38 mitogen-activated protein kinase and protein kinase C in AII-induced SM-Calp, inhibitors to each of the signalling pathways were used. None of these signalling molecules appears to be crucial for AII-induced SM-Calp expression, although Erk1/2 may be partially involved. These results identify SM-Calp as a target of AII-mediated signalling, and suggest that the SMC response to AII may incorporate a novel activity of SM-Calp.



1998 ◽  
Vol 511 (2) ◽  
pp. 333-346 ◽  
Author(s):  
Francisco Barros ◽  
David Gómez-Varela ◽  
Cristina G. Viloria ◽  
Teresa Palomero ◽  
Teresa Giráldez ◽  
...  


2003 ◽  
Vol 23 (29) ◽  
pp. 9529-9540 ◽  
Author(s):  
Jian Qiu ◽  
Martha A. Bosch ◽  
Sandra C. Tobias ◽  
David K. Grandy ◽  
Thomas S. Scanlan ◽  
...  




10.1038/7243 ◽  
1999 ◽  
Vol 2 (4) ◽  
pp. 331-338 ◽  
Author(s):  
W-Y. Lu ◽  
Z-G. Xiong ◽  
S. Lei ◽  
B. A. Orser ◽  
E. Dudek ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document