scholarly journals Leishmania mexicana Mutants Lacking Glycosylphosphatidylinositol (GPI):Protein Transamidase Provide Insights into the Biosynthesis and Functions of GPI-anchored Proteins

2000 ◽  
Vol 11 (4) ◽  
pp. 1183-1195 ◽  
Author(s):  
James D. Hilley ◽  
Jody L. Zawadzki ◽  
Malcolm J. McConville ◽  
Graham H. Coombs ◽  
Jeremy C. Mottram

The major surface proteins of the parasitic protozoonLeishmania mexicana are anchored to the plasma membrane by glycosylphosphatidylinositol (GPI) anchors. We have cloned the L. mexicana GPI8 gene that encodes the catalytic component of the GPI:protein transamidase complex that adds GPI anchors to nascent cell surface proteins in the endoplasmic reticulum. Mutants lacking GPI8 (ΔGPI8) do not express detectable levels of GPI-anchored proteins and accumulate two putative protein–anchor precursors. However, the synthesis and cellular levels of other non–protein-linked GPIs, including lipophosphoglycan and a major class of free GPIs, are not affected in the ΔGPI8 mutant. Significantly, the ΔGPI8 mutant displays normal growth in liquid culture, is capable of differentiating into replicating amastigotes within macrophages in vitro, and is infective to mice. These data suggest that GPI-anchored surface proteins are not essential to L. mexicana for its entry into and survival within mammalian host cells in vitro or in vivo and provide further support for the notion that free GPIs are essential for parasite growth.

2021 ◽  
Vol 22 (13) ◽  
pp. 7099
Author(s):  
Pradeep Kumar Kopparapu ◽  
Meghshree Deshmukh ◽  
Zhicheng Hu ◽  
Majd Mohammad ◽  
Marco Maugeri ◽  
...  

Staphylococcal aureus (S. aureus), a Gram-positive bacteria, is known to cause various infections. Extracellular vesicles (EVs) are a heterogeneous array of membranous structures secreted by cells from all three domains of life, i.e., eukaryotes, bacteria, and archaea. Bacterial EVs are implied to be involved in both bacteria–bacteria and bacteria–host interactions during infections. It is still unclear how S. aureus EVs interact with host cells and induce inflammatory responses. In this study, EVs were isolated from S. aureus and mutant strains deficient in either prelipoprotein lipidation (Δlgt) or major surface proteins (ΔsrtAB). Their immunostimulatory capacities were assessed both in vitro and in vivo. We found that S. aureus EVs induced pro-inflammatory responses both in vitro and in vivo. However, this activity was dependent on lipidated lipoproteins (Lpp), since EVs isolated from the Δlgt showed no stimulation. On the other hand, EVs isolated from the ΔsrtAB mutant showed full immune stimulation, indicating the cell wall anchoring of surface proteins did not play a role in immune stimulation. The immune stimulation of S. aureus EVs was mediated mainly by monocytes/macrophages and was TLR2 dependent. In this study, we demonstrated that not only free Lpp but also EV-imbedded Lpp had high pro-inflammatory activity.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Jeffery K. Taubenberger

ABSTRACT Influenza A viruses are important pathogens for humans and for many birds and mammals. Hemagglutinin and neuraminidase are the major surface proteins of this enveloped RNA virus. Hemagglutinin requires proteolytic cleavage for activation, but because the viral genome does not encode its own protease, an exogenous serine protease must be provided by host cells. A novel, neuraminidase-dependent mechanism for hemagglutinin activation was described, in which a thrombin-like protease allows an influenza A/H7N6 virus, isolated from a mallard duck, to replicate systemically and induce enhanced disease in avian and mammalian model animals and to replicate in vitro in the absence of trypsin. Thrombin-like protease activation required the N6 neuraminidase, but also required the presence of a thrombin-like cleavage motif in the H7 hemagglutinin. This novel example of neuraminidase-dependent hemagglutinin activation demonstrates the extraordinary evolutionary flexibility of influenza A viruses and is a fascinating example of epistasis between the hemagglutinin and neuraminidase genes.


1997 ◽  
Vol 8 (2) ◽  
pp. 175-200 ◽  
Author(s):  
H.F. Jenkinson ◽  
RJ Lamont

Streptococci express arrays of adhesins on their cell surfaces that facilitate adherence to substrates present in their natural environment within the mammalian host. A consequence of such promiscuous binding ability is that streptococcal cells may adhere simultaneously to a spectrum of substrates, including salivary glycoproteins, extracellular matrix and serum components, host cells, and other microbial cells. The multiplicity of streptococcal adherence interactions accounts, at least in part, for their success in colonizing the oral and epithelial surfaces of humans. Adhesion facilitates colonization and may be a precursor to tissue invasion and immune modulation, events that presage the development of disease. Many of the streptococcal adhesins and virulence-related factors are cell-wall-associated proteins containing repeated sequence blocks of amino acids. Linear sequences, both within the blocks and within non-repetitive regions of the proteins, have been implicated in substrate binding. Sequences and functions of these proteins among the streptococci have become assorted through gene duplication and horizontal transfer between bacterial populations. Several adhesins identified and characterized through in vitro binding assays have been analyzed for in vivo expression and function by means of animal models used for colonization and virulence. Information on the molecular structure of adhesins as related to their in vivo function will allow for the rational design of novel acellular vaccines, recombinant antibodies, and adhesion agonists for the future control or prevention of streptococcal colonization and streptococcal diseases.


Parasitology ◽  
2004 ◽  
Vol 129 (S1) ◽  
pp. S285-S300 ◽  
Author(s):  
K. M. KOCAN ◽  
J. DE LA FUENTE ◽  
E. F. BLOUIN ◽  
J. C. GARCIA-GARCIA

The tick-borne intracellular pathogenAnaplasma marginale(Rickettsiales: Anaplasmataceae) develops persistent infections in cattle and tick hosts. While erythrocytes appear to be the only site of infection in cattle,A. marginaleundergoes a complex developmental cycle in ticks and transmission occurs via salivary glands during feeding. Many geographic isolates occur that vary in genotype, antigenic composition, morphology and infectivity for ticks. In this chapter we review recent research on the host–vector–pathogen interactions ofA. marginale. Major surface proteins (MSPs) play a crucial role in the interaction ofA. marginalewith host cells. The MSP1a protein, which is an adhesin for bovine erythrocytes and tick cells, is differentially regulated and affects infection and transmission ofA. marginalebyDermacentorspp. ticks. MSP2 undergoes antigenic variation and selection in cattle and ticks, and contributes to the maintenance of persistent infections. Phylogenetic studies ofA. marginalegeographic isolates usingmsp4andmsp1α provide information about the biogeography and evolution ofA. marginale:msp1α genotypes evolve under positive selection pressure. Isolates ofA. marginaleare maintained by independent transmission events and a mechanism of infection exclusion in cattle and ticks allows for only the infection of one isolate per animal. Prospects for development of control strategies by use of pathogen and tick-derived antigens are discussed. TheA. marginale/vector/host studies described herein could serve as a model for research on other tick-borne rickettsiae.


1984 ◽  
Vol 160 (5) ◽  
pp. 1404-1420 ◽  
Author(s):  
S A Jones ◽  
K S Marchitto ◽  
J N Miller ◽  
M V Norgard

Radioimmunoprecipitation (RIP) analyses performed on 125I-surface-labeled Treponema pallidum cells using various immune sera revealed the presence of six major surface antigens (immunogens) with apparent molecular weights of 47 K, 36 K, 34 K, 32 K, 29 K, and 13 K. Among these, the 47 K surface antigen was most abundant. Radioimmunoprecipitation assays using 125I-labeled T. phagedenis biotype Reiter or immunoblot analyses using the same strain, failed to reveal the presence of the 47 K mol wt antigen in the representative nonpathogenic treponeme. Preabsorption of anti-T. pallidum immune rabbit serum (IRS) with the Reiter organism did not remove anti-T. pallidum antibodies from immune serum that reacted with the 47 K mol wt immunogen or other immunogens of T. pallidum present in the characteristic antigenic profile. Monoclonal antibodies (mAb) directed specifically against the 47 K mol wt immunogen of T. pallidum also failed to react with an analogous 47 K mol wt component in Treponema phagedenis biotype Reiter, further suggesting the unique presence of this antigen in pathogenic treponemes. The presence of the 47 K mol wt surface immunogen in pathogenic treponemes other than T. pallidum subspecies pallidum was also observed (43). Anti-47 K immunogen mAb was nonreactive against rabbit IgG or IgM. mAb directed specifically against the 47 K mol wt immunogen of T. pallidum was examined for strategic functional activities. It was found to be reactive in the microhemagglutination assay for T. pallidum antibodies, the T. pallidum immobilization test, and was found to be capable of significant blockage of attachment of virulent T. pallidum to host cells in tissue culture. Additional significant biological activity for the anti-47 K mol wt immunogen mAb was revealed through results of the in vitro-in vivo neutralization test of Bishop and Miller, in which a 99% or 100% neutralizing activity was demonstrated. The combined data of this study suggest that the 47 K mol wt immunogen of T. pallidum represents an abundant, immunodominant, surface-exposed immunogen possessing potential biological importance in the pathogenesis and immunology of T. pallidum infection. These studies serve to establish the first functionally defined immunogen for T. pallidum, which may represent the major immunogen of the organism.


Parasitology ◽  
2013 ◽  
Vol 141 (4) ◽  
pp. 501-510 ◽  
Author(s):  
ASHA PARBHU PATEL ◽  
ANDREW DEACON ◽  
GIULIA GETTI

SUMMARYGreen fluorescent protein (GFP)-parasite transfectants have been widely used as a tool for studying disease pathogenesis in several protozoan models and their application in drug screening assays has increased rapidly. In the past decade, the expression of GFP has been established in severalLeishmaniaspecies, mostly forin vitrostudies. The current work reports generation of four transgenic parasites constitutively expressing GFP (Leishmania mexicana, Leishmania aethiopica, Leishmania tropicaandLeishmania major) and their validation as a representative model of infection. This is the first report where stable expression of GFP has been achieved inL. aethiopicaandL. tropica. Integration of GFP was accomplished through homologous recombination of the expression construct, pRib1.2αNEOαGFP downstream of the 18S rRNA promoter in all species. A homogeneous and high level expression of GFP was detected in both the promastigote and the intracellular amastigote stages. All transgenic species showed the same growth pattern, ability to infect mammalian host cells and sensitivity to reference drugs as their wild type counterparts. All four transgenicLeishmaniaare confirmed as models forin vitroand possiblyin vivoinfections and represent an ideal tool for medium throughput testing of compound libraries.


2010 ◽  
Vol 192 (22) ◽  
pp. 5898-5905 ◽  
Author(s):  
Kathryn Gibson ◽  
Yumi Kumagai ◽  
Yasuko Rikihisa

ABSTRACT Neorickettsia sennetsu is an obligate intracellular bacterium of monocytes and macrophages and is the etiologic agent of human Sennetsu neorickettsiosis. Neorickettsia proteins expressed in mammalian host cells, including the surface proteins of Neorickettsia spp., have not been defined. In this paper, we isolated surface-exposed proteins from N. sennetsu by biotin surface labeling followed by streptavidin-affinity chromatography. Forty-two of the total of 936 (4.5%) N. sennetsu open reading frames (ORFs) were detected by liquid chromatography-tandem mass spectrometry (LC/MS/MS), including six hypothetical proteins. Among the major proteins identified were the two major β-barrel proteins: the 51-kDa antigen (P51) and Neorickettsia surface protein 3 (Nsp3). Immunofluorescence labeling not only confirmed surface exposure of these proteins but also showed rosary-like circumferential labeling with anti-P51 for the majority of bacteria and polar to diffuse punctate labeling with anti-Nsp3 for a minority of bacteria. We found that the isolated outer membrane of N. sennetsu had porin activity, as measured by a proteoliposome swelling assay. This activity allowed the diffusion of l-glutamine, the monosaccharides arabinose and glucose, and the tetrasaccharide stachyose, which could be inhibited with anti-P51 antibody. We purified native P51 and Nsp3 under nondenaturing conditions. When reconstituted into proteoliposomes, purified P51, but not Nsp3, exhibited prominent porin activity. This the first proteomic study of a Neorickettsia sp. showing new sets of proteins evolved as major surface proteins for Neorickettsia and the first identification of a porin for the genus Neorickettsia.


2018 ◽  
Vol 18 (5) ◽  
pp. 321-368 ◽  
Author(s):  
Juan A. Bisceglia ◽  
Maria C. Mollo ◽  
Nadia Gruber ◽  
Liliana R. Orelli

Neglected diseases due to the parasitic protozoa Leishmania and Trypanosoma (kinetoplastids) affect millions of people worldwide, and the lack of suitable treatments has promoted an ongoing drug discovery effort to identify novel nontoxic and cost-effective chemotherapies. Polyamines are ubiquitous small organic molecules that play key roles in kinetoplastid parasites metabolism, redox homeostasis and in the normal progression of cell cycles, which differ from those found in the mammalian host. These features make polyamines attractive in terms of antiparasitic drug development. The present work provides a comprehensive insight on the use of polyamine derivatives and related nitrogen compounds in the chemotherapy of kinetoplastid diseases. The amount of literature on this subject is considerable, and a classification considering drug targets and chemical structures were made. Polyamines, aminoalcohols and basic heterocycles designed to target the relevant parasitic enzyme trypanothione reductase are discussed in the first section, followed by compounds directed to less common targets, like parasite SOD and the aminopurine P2 transporter. Finally, the third section comprises nitrogen compounds structurally derived from antimalaric agents. References on the chemical synthesis of the selected compounds are reported together with their in vivo and/or in vitro IC50 values, and structureactivity relationships within each group are analyzed. Some favourable structural features were identified from the SAR analyses comprising protonable sites, hydrophobic groups and optimum distances between them. The importance of certain pharmacophoric groups or amino acid residues in the bioactivity of polyamine derived compounds is also discussed.


2020 ◽  
Author(s):  
Avik Sotira Scientific

UNSTRUCTURED Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome (SARS) caused by a virus known as SARS-Coronavirus 2 (SARS-CoV2). Without a targeted-medicine, this disease has been causing a massive humanitarian crisis not only in terms of mortality, but also imposing a lasting damage to social life and economic progress of humankind. Therefore, an immediate therapeutic strategy needs to be intervened to mitigate this global crisis. Here, we report a novel KepTide™ (Knock-End Peptide) therapy that nullifies SARS-CoV2 infection. SARS-CoV2 employs its surface glycoprotein “spike” (S-glycoprotein) to interact with angiotensin converting enzyme-2 (ACE-2) receptor for its infection in host cells. Based on our in-silico-based homology modeling study validated with a recent X-ray crystallographic structure (PDB ID:6M0J), we have identified that a conserved motif of S-glycoprotein that intimately engages multiple hydrogen-bond (H-bond) interactions with ACE-2 enzyme. Accordingly, we designed a peptide, termed as ACIS (ACE-2 Inhibitory motif of Spike), that displayed significant affinity towards ACE-2 enzyme as confirmed by biochemical assays such as BLItz and fluorescence polarization assays. Interestingly, more than one biochemical modifications were adopted in ACIS in order to enhance the inhibitory action of ACIS and hence called as KEpTide™. Consequently, a monolayer invasion assay, plaque assay and dual immunofluorescence analysis further revealed that KEpTide™ efficiently mitigated the infection of SARS-CoV2 in vitro in VERO E6 cells. Finally, evaluating the relative abundance of ACIS in lungs and the potential side-effects in vivo in mice, our current study discovers a novel KepTide™ therapy that is safe, stable, and robust to attenuate the infection of SARS-CoV2 virus if administered intranasally. INTERNATIONAL REGISTERED REPORT RR2-https://doi.org/10.1101/2020.10.13.337584


Sign in / Sign up

Export Citation Format

Share Document