Development and validation of fourLeishmaniaspecies constitutively expressing GFP protein. A model for drug discovery and disease pathogenesis studies

Parasitology ◽  
2013 ◽  
Vol 141 (4) ◽  
pp. 501-510 ◽  
Author(s):  
ASHA PARBHU PATEL ◽  
ANDREW DEACON ◽  
GIULIA GETTI

SUMMARYGreen fluorescent protein (GFP)-parasite transfectants have been widely used as a tool for studying disease pathogenesis in several protozoan models and their application in drug screening assays has increased rapidly. In the past decade, the expression of GFP has been established in severalLeishmaniaspecies, mostly forin vitrostudies. The current work reports generation of four transgenic parasites constitutively expressing GFP (Leishmania mexicana, Leishmania aethiopica, Leishmania tropicaandLeishmania major) and their validation as a representative model of infection. This is the first report where stable expression of GFP has been achieved inL. aethiopicaandL. tropica. Integration of GFP was accomplished through homologous recombination of the expression construct, pRib1.2αNEOαGFP downstream of the 18S rRNA promoter in all species. A homogeneous and high level expression of GFP was detected in both the promastigote and the intracellular amastigote stages. All transgenic species showed the same growth pattern, ability to infect mammalian host cells and sensitivity to reference drugs as their wild type counterparts. All four transgenicLeishmaniaare confirmed as models forin vitroand possiblyin vivoinfections and represent an ideal tool for medium throughput testing of compound libraries.

2007 ◽  
Vol 35 (4) ◽  
pp. 797-801 ◽  
Author(s):  
J.A. Gomez ◽  
V. Gama ◽  
T. Yoshida ◽  
W. Sun ◽  
P. Hayes ◽  
...  

We found that Ku70, a known DNA repair factor, has a novel function to bind and inhibit Bax (Bcl-2-associated X protein), a key mediator of apoptosis. Pentapeptides derived from the Bax-binding domain of Ku70 were cell-permeable and protected cells from Bax-mediated apoptosis. These pentapeptides were called BIPs (Bax-inhibiting peptides). BIPs may become a useful therapeutic tool to reduce cellular damage. We also generated BIP mutant pentapeptides that do not inhibit Bax, but retain their cell-penetrating activity. Since both BIPs and BIP mutants are cell-permeable, these peptides were designated CPP5s (cell-penetrating pentapeptides). Among the CPP5s discovered, VPTLK (BIP) and KLPVM (BIP mutant) were confirmed to possess protein transduction activity by examination of the delivery of GFP (green fluorescent protein) into cells by these peptides. The mechanism of cell penetration by CPP5s is not known. CPP5s enter the cell at 0 and 4°C. In preliminary studies, various inhibitors of endocytosis and pinocytosis did not show any significant suppression of CPP5 cell entry. CPP5s have very low toxicity in vitro and in vivo and so may be useful tools in order to develop non-toxic drug-delivery technologies.


2009 ◽  
Vol 191 (8) ◽  
pp. 2493-2500 ◽  
Author(s):  
Parvez Akhtar ◽  
Syam P. Anand ◽  
Simon C. Watkins ◽  
Saleem A. Khan

ABSTRACT Bacillus anthracis contains two megaplasmids, pXO1 and pXO2, that are critical for its pathogenesis. Stable inheritance of pXO1 in B. anthracis is dependent upon the tubulin/FtsZ-like RepX protein encoded by this plasmid. Previously, we have shown that RepX undergoes GTP-dependent polymerization in vitro. However, the polymerization properties and localization pattern of RepX in vivo are not known. Here, we utilize a RepX-green fluorescent protein (GFP) fusion to show that RepX forms foci and three distinct forms of polymeric structures in B. anthracis in vivo, namely straight, curved, and helical filaments. Polymerization of RepX-GFP as well as the nature of polymers formed were dependent upon concentration of the protein inside the B. anthracis cells. RepX predominantly localized as polymers that were parallel to the length of the cell. RepX also formed polymers in Escherichia coli in the absence of other pXO1-encoded products, showing that in vivo polymerization is an inherent property of the protein and does not require either the pXO1 plasmid or proteins unique to B. anthracis. Overexpression of RepX did not affect the cell morphology of B. anthracis cells, whereas it drastically distorted the cell morphology of E. coli host cells. We discuss the significance of our observations in view of the plasmid-specific functions that have been proposed for RepX and related proteins encoded by several megaplasmids found in members of the Bacillus cereus group of bacteria.


2021 ◽  
Vol 9 (2) ◽  
pp. 379
Author(s):  
Breanne M. Head ◽  
Christopher I. Graham ◽  
Teassa MacMartin ◽  
Yoav Keynan ◽  
Ann Karen C. Brassinga

Legionnaires’ disease incidence is on the rise, with the majority of cases attributed to the intracellular pathogen, Legionella pneumophila. Nominally a parasite of protozoa, L. pneumophila can also infect alveolar macrophages when bacteria-laden aerosols enter the lungs of immunocompromised individuals. L. pneumophila pathogenesis has been well characterized; however, little is known about the >25 different Legionella spp. that can cause disease in humans. Here, we report for the first time a study demonstrating the intracellular infection of an L. bozemanae clinical isolate using approaches previously established for L. pneumophila investigations. Specifically, we report on the modification and use of a green fluorescent protein (GFP)-expressing plasmid as a tool to monitor the L. bozemanae presence in the Acanthamoeba castellanii protozoan infection model. As comparative controls, L. pneumophila strains were also transformed with the GFP-expressing plasmid. In vitro and in vivo growth kinetics of the Legionella parental and GFP-expressing strains were conducted followed by confocal microscopy. Results suggest that the metabolic burden imposed by GFP expression did not impact cell viability, as growth kinetics were similar between the GFP-expressing Legionella spp. and their parental strains. This study demonstrates that the use of a GFP-expressing plasmid can serve as a viable approach for investigating Legionella non-pneumophila spp. in real time.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Peng-Fei Fu ◽  
Xuan Cheng ◽  
Bing-Qian Su ◽  
Li-Fang Duan ◽  
Cong-Rong Wang ◽  
...  

AbstractPseudorabies, caused by pseudorabies virus (PRV) variants, has broken out among commercial PRV vaccine-immunized swine herds and resulted in major economic losses to the pig industry in China since late 2011. However, the mechanism of virulence enhancement of variant PRV is currently unclear. Here, a recombinant PRV (rPRV HN1201-EGFP-Luc) with stable expression of enhanced green fluorescent protein (EGFP) and firefly luciferase as a double reporter virus was constructed on the basis of the PRV variant HN1201 through CRISPR/Cas9 gene-editing technology coupled with two sgRNAs. The biological characteristics of the recombinant virus and its lethality to mice were similar to those of the parental strain and displayed a stable viral titre and luciferase activity through 20 passages. Moreover, bioluminescence signals were detected in mice at 12 h after rPRV HN1201-EGFP-Luc infection. Using the double reporter PRV, we also found that 25-hydroxycholesterol had a significant inhibitory effect on PRV both in vivo and in vitro. These results suggested that the double reporter PRV based on PRV variant HN1201 should be an excellent tool for basic virology studies and evaluating antiviral agents.


2021 ◽  
Vol 22 (8) ◽  
pp. 4073
Author(s):  
Yifan Lai ◽  
Qingyuan Feng ◽  
Rui Zhang ◽  
Jing Shang ◽  
Hui Zhong

To investigate a possible methodology of exploiting herbal medicine and design polytherapy for the treatment of skin depigmentation disorder, we have made use of Vernonia anthelmintica (L.) Willd., a traditional Chinese herbal medicine that has been proven to be effective in treating vitiligo. Here, we report that the extract of Vernonia anthelmintica (L.) Willd. effectively enhances melanogenesis responses in B16F10. In its compound library, we found three ingredients (butin, caffeic acid and luteolin) also have the activity of promoting melanogenesis in vivo and in vitro. They can reduce the accumulation of ROS induced by hydrogen peroxide and inflammatory response induced by sublethal concentrations of copper sulfate in wild type and green fluorescent protein (GFP)-labeled leukocytes zebrafish larvae. The overall objective of the present study aims to identify which compatibility proportions of the medicines may be more effective in promoting pigmentation. We utilized the D-optimal response surface methodology to optimize the ratio among three molecules. Combining three indicators of promoting melanogenesis, anti-inflammatory and antioxidant capacities, we get the best effect of butin, caffeic acid and luteolin at the ratio (butin:caffeic acid:luteolin = 7.38:28.30:64.32) on zebrafish. Moreover, the effect of melanin content recovery in the best combination is stronger than that of the monomer, which suggests that the three compounds have a synergistic effect on inducing melanogenesis. After simply verifying the result, we performed in situ hybridization on whole-mount zebrafish embryos to further explore the effects of multi-drugs combination on the proliferation and differentiation of melanocytes and the expression of genes (tyr, mitfa, dct, kit) related to melanin synthesis. In conclusion, the above three compatible compounds can significantly enhance melanogenesis and improve depigmentation in vivo.


2021 ◽  
Vol 30 ◽  
pp. 096368972097821
Author(s):  
Andrea Tenorio-Mina ◽  
Daniel Cortés ◽  
Joel Esquivel-Estudillo ◽  
Adolfo López-Ornelas ◽  
Alejandro Cabrera-Wrooman ◽  
...  

Human skin contains keratinocytes in the epidermis. Such cells share their ectodermal origin with the central nervous system (CNS). Recent studies have demonstrated that terminally differentiated somatic cells can adopt a pluripotent state, or can directly convert its phenotype to neurons, after ectopic expression of transcription factors. In this article we tested the hypothesis that human keratinocytes can adopt neural fates after culturing them in suspension with a neural medium. Initially, keratinocytes expressed Keratins and Vimentin. After neural induction, transcriptional upregulation of NESTIN, SOX2, VIMENTIN, SOX1, and MUSASHI1 was observed, concomitant with significant increases in NESTIN detected by immunostaining. However, in vitro differentiation did not yield the expression of neuronal or astrocytic markers. We tested the differentiation potential of control and neural-induced keratinocytes by grafting them in the developing CNS of rats, through ultrasound-guided injection. For this purpose, keratinocytes were transduced with lentivirus that contained the coding sequence of green fluorescent protein. Cell sorting was employed to select cells with high fluorescence. Unexpectedly, 4 days after grafting these cells in the ventricles, both control and neural-induced cells expressed green fluorescent protein together with the neuronal proteins βIII-Tubulin and Microtubule-Associated Protein 2. These results support the notion that in vivo environment provides appropriate signals to evaluate the neuronal differentiation potential of keratinocytes or other non-neural cell populations.


1997 ◽  
Vol 8 (2) ◽  
pp. 175-200 ◽  
Author(s):  
H.F. Jenkinson ◽  
RJ Lamont

Streptococci express arrays of adhesins on their cell surfaces that facilitate adherence to substrates present in their natural environment within the mammalian host. A consequence of such promiscuous binding ability is that streptococcal cells may adhere simultaneously to a spectrum of substrates, including salivary glycoproteins, extracellular matrix and serum components, host cells, and other microbial cells. The multiplicity of streptococcal adherence interactions accounts, at least in part, for their success in colonizing the oral and epithelial surfaces of humans. Adhesion facilitates colonization and may be a precursor to tissue invasion and immune modulation, events that presage the development of disease. Many of the streptococcal adhesins and virulence-related factors are cell-wall-associated proteins containing repeated sequence blocks of amino acids. Linear sequences, both within the blocks and within non-repetitive regions of the proteins, have been implicated in substrate binding. Sequences and functions of these proteins among the streptococci have become assorted through gene duplication and horizontal transfer between bacterial populations. Several adhesins identified and characterized through in vitro binding assays have been analyzed for in vivo expression and function by means of animal models used for colonization and virulence. Information on the molecular structure of adhesins as related to their in vivo function will allow for the rational design of novel acellular vaccines, recombinant antibodies, and adhesion agonists for the future control or prevention of streptococcal colonization and streptococcal diseases.


2010 ◽  
Vol 119 (11) ◽  
pp. 805-810 ◽  
Author(s):  
Satoshi Ohno ◽  
Shigeru Hirano ◽  
Ichiro Tateya ◽  
Shin-Ichi Kanemaru ◽  
Hiroo Umeda ◽  
...  

Objectives: Treatment of vocal fold scarring remains a therapeutic challenge. Our group previously reported the efficacy of treating injured vocal folds by implantation of bone marrow—derived stromal cells containing mesenchymal stem cells. Appropriate scaffolding is necessary for the stem cell implant to achieve optimal results. Terudermis is an atelocollagen sponge derived from calf dermis. It has large pores that permit cellular entry and is degraded in vivo. These characteristics suggest that this material may be a good candidate for use as scaffolding for implantation of cells. The present in vitro study investigated the feasibility of using Terudermis as such a scaffold. Methods: Bone marrow—derived stromal cells were obtained from GFP (green fluorescent protein) mouse femurs. The cells were seeded into Terudermis and incubated for 5 days. Their survival, proliferation, and expression of extracellular matrix were examined. Results: Bone marrow—derived stromal cells adhered to Terudermis and underwent significant proliferation. Immunohistochemical examination demonstrated that adherent cells were positive for expression of vimentin, desmin, fibronectin, and fsp1 and negative for beta III tubulin. These findings indicate that these cells were mesodermal cells and attached to the atelocollagen fibers biologically. Conclusions: The data suggest that Terudermis may have potential as stem cell implantation scaffolding for the treatment of scarred vocal folds.


2001 ◽  
Vol 44 (S1) ◽  
pp. S339-S341
Author(s):  
K. E. Luker ◽  
G. D. Luker ◽  
C. M. Pica ◽  
J. L. Dahlheimer ◽  
T. J. Fahrner ◽  
...  

2000 ◽  
Vol 11 (4) ◽  
pp. 1183-1195 ◽  
Author(s):  
James D. Hilley ◽  
Jody L. Zawadzki ◽  
Malcolm J. McConville ◽  
Graham H. Coombs ◽  
Jeremy C. Mottram

The major surface proteins of the parasitic protozoonLeishmania mexicana are anchored to the plasma membrane by glycosylphosphatidylinositol (GPI) anchors. We have cloned the L. mexicana GPI8 gene that encodes the catalytic component of the GPI:protein transamidase complex that adds GPI anchors to nascent cell surface proteins in the endoplasmic reticulum. Mutants lacking GPI8 (ΔGPI8) do not express detectable levels of GPI-anchored proteins and accumulate two putative protein–anchor precursors. However, the synthesis and cellular levels of other non–protein-linked GPIs, including lipophosphoglycan and a major class of free GPIs, are not affected in the ΔGPI8 mutant. Significantly, the ΔGPI8 mutant displays normal growth in liquid culture, is capable of differentiating into replicating amastigotes within macrophages in vitro, and is infective to mice. These data suggest that GPI-anchored surface proteins are not essential to L. mexicana for its entry into and survival within mammalian host cells in vitro or in vivo and provide further support for the notion that free GPIs are essential for parasite growth.


Sign in / Sign up

Export Citation Format

Share Document