scholarly journals Structure and Function of a Vimentin-associated Matrix Adhesion in Endothelial Cells

2001 ◽  
Vol 12 (1) ◽  
pp. 85-100 ◽  
Author(s):  
Meredith Gonzales ◽  
Babette Weksler ◽  
Daisuke Tsuruta ◽  
Robert D. Goldman ◽  
Kristine J. Yoon ◽  
...  

The α4 laminin subunit is a component of endothelial cell basement membranes. An antibody (2A3) against the α4 laminin G domain stains focal contact-like structures in transformed and primary microvascular endothelial cells (TrHBMECs and HMVECs, respectively), provided the latter cells are activated with growth factors. The 2A3 antibody staining colocalizes with that generated by αv and β3 integrin antibodies and, consistent with this localization, TrHBMECs and HMVECs adhere to the α4 laminin subunit G domain in an αvβ3-integrin–dependent manner. The αvβ3 integrin/2A3 antibody positively stained focal contacts are recognized by vinculin antibodies as well as by antibodies against plectin. Unusually, vimentin intermediate filaments, in addition to microfilament bundles, interact with many of the αvβ3 integrin-positive focal contacts. We have investigated the function of α4-laminin and αvβ3-integrin, which are at the core of these focal contacts, in cultured endothelial cells. Antibodies against these proteins inhibit branching morphogenesis of TrHBMECs and HMVECs in vitro, as well as their ability to repopulate in vitro wounds. Thus, we have characterized an endothelial cell matrix adhesion, which shows complex cytoskeletal interactions and whose assembly is regulated by growth factors. Our data indicate that this adhesion structure may play a role in angiogenesis.

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Bin Ren ◽  
Arpita Mukhopadhyay* ◽  
Anthony A Lanahan ◽  
Zhen W Zhuang ◽  
Karen L Moodie ◽  
...  

Background : Arterial morphogenesis is an important and poorly understood process. We have previously demonstrated that disruption of synectin gene expression in mice and zebrafish results in impaired arterial development and branching morphogenesis. Synectin null endothelial cells demonstrate reduced VEGF responsiveness in terms of migration, proliferation and differentiation and ERK-1/2 activation (Chittenden et al, Dev Cell 2006). Since ERK has been established as major participants in the regulation of cell growth and differentiation and Erk activation has been previously linked to arterial morphogenesis, we evaluated whether activation of Erk signaling in synectin disrupted mice and zebrafish as well as synectin KO arterial endothelial cells (ECs) would restore defective migration, arterial differentiation, angiogenesis and arteriogenesis. To stimulate ERK signaling we used partial inhibition of PI3-K activity to reduce Akt-dependent suppression of Raf1 activation or introduction of constitutively active ERK construct. Methods : In vitro studies were conducted with primary arterial ECs isolated from synectin wild type (WT) and knock out (KO) mice. In vivo studies were carried out in WT and synectin deficient mice and synectin knockdown zebrafish embryos. Results: Exposure of synectin −/− arterial EC to two selective PI3K inhibitors GS4898 or LY294002 in vitro restored ERK activation in a dose-dependent manner and returned cell migration and in vitro branching morphogenesis to wild type levels. Transduction of a constitutively active ERK construct in vitro or in a Matrigel model in vivo had similar effect. Systemic treatment of synectin −/− mice with GS4898 fully restored impaired angiogenesis and arterial morphogenesis in adult animals in the setting of hindlimb ischemia. Similar treatment nearly completely restored arterial development defects in zebrafish treated with a synectin morpholino. Conclusions: ERK activation plays a key role in arteriogenesis both in adult tissues and during embryonic development. Activation of compromised ERK-1/2 signaling may be a novel therapeutic intervention to stimulate arteriogenesis.


2011 ◽  
Vol 31 (10) ◽  
pp. 1972-1985 ◽  
Author(s):  
Takashi Osada ◽  
Yu-Huan Gu ◽  
Masato Kanazawa ◽  
Yoshiaki Tsubota ◽  
Brian T Hawkins ◽  
...  

The hypothesis tested by these studies states that in addition to interendothelial cell tight junction proteins, matrix adhesion by β1-integrin receptors expressed by endothelial cells have an important role in maintaining the cerebral microvessel permeability barrier. Primary brain endothelial cells from C57 BL/6 mice were incubated with β1-rintegrin function-blocking antibody (Ha2/5) or isotype control and the impacts on claudin-5 expression and microvessel permeability were quantified. Both flow cytometry and immunofluorescence studies demonstrated that the interendothelial claudin-5 expression by confluent endothelial cells was significantly decreased in a time-dependent manner by Ha2/5 exposure relative to isotype. Furthermore, to assess the barrier properties, transendothelial electrical resistance and permeability measurements of the monolayer, and stereotaxic injection into the striatum of mice were performed. Ha2/5 incubation reduced the resistance of endothelial cell monolayers significantly, and significantly increased permeability to 40 and 150 k Da dextrans. Ha2/5 injection into mouse striatum produced significantly greater IgG extravasation than the isotype or the control injections. This study demonstrates that blockade of β1-integrin function changes interendothelial claudin-5 expression and increases microvessel permeability. Hence, endothelial cell-matrix interactions via β1-integrin directly affect interendothelial cell tight junction claudin-5 expression and brain microvascular permeability.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2507-2507 ◽  
Author(s):  
Klaus Podar ◽  
Jing Zhang ◽  
Marc S. Raab ◽  
Sonia Vallet ◽  
Mariateresa Fulciniti ◽  
...  

Abstract Our own and other previous studies demonstrate marked anti-proliferative activity of the tyrophostin adaphostin (NSC680410) in a variety of hematologic malignancies including chronic myelocytic leukemia (CML), chronic lymphcytic leukemia (CLL), acute myelocytic leukemia (AML), and Multiple Myeloma. Here we show that adaphostin (NSC680410), similar to bortezomib, additionally inhibits tumor angiogenesis within the MM bone marrow (BM) microenvironment. This effect is elicited both indirectly by inhibition of VEGF production and secretion in MM cells, as well as directly by abrogation of endothelial cell growth. Specifically, adaphostin triggers marked downregulation of nuclear c-Myc expression in MM cells. Both adaphostin, as well as specific downregulation of c-Myc using siRNA, lead to a decrease in cobalt chloride- induced Hif-1alpha- expression and Hif-1alpha activity, as evidenced by western blot analysis and expression of Hif-1alpha- driven luciferase, respectively. Indeed secretion of the Hif-1alpha target gene VEGF is markedly inhibited in a dose- and time- dependent manner. Importantly, neither knockdown of c-Abl expression nor exogenous overexpression of caspase- cleavage- induced c-Abl fragment abrogates drug- induced Hif-1alpha downregulation or inhibition of its activity. Taken together, these results indicate the existence of a c-Myc/ Hif-1alpha- dependent, but c-Abl- independent, pathway modulating MM cell production and secretion of VEGF. In contrast, we demonstrate a direct antiangiogenic effect of adaphostin on endothelial cells, similar to H2O2, is mediated via c-Jun upregulation, inhibition of cell proliferation, and the induction of cell apoptosis. Moreover, our data further demonstrate activity of adaphostin within the BM microenvironment. Adaphostin, similar to bortezomib, significantly inhibits VEGF secretion triggered by adhesion of MM cells to BMSCs and endothelial cells. Consequently, conditioned medium derived from adaphostin- treated co-cultures markedly inhibits endothelial cell growth and tubule formation in a dose- dependent manner. Finally, we confirmed these in vitro results using an in vivo xenograft mouse model of human MM. Specifically, western blot analysis, as well as immunohistochemistry, demonstrate marked downregulation of both Hif-1alpha and CD31 in tumors isolated from adaphostin- treated animals versus control animals, confirming the in vivo antiangiogenic effect of adaphostin. Similar effects were obtained using a SCIDhu mouse model as well as a significant decrease of MM- related bone disease, due to anti- VEGF activity of adaphostin. Taken together, these data provide the rationale for the clinical evaluation of adaphostin to target both MM cells and the BM milieu to improve patient outcome in Multiple Myeloma.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1145-1145
Author(s):  
Manfai Lee ◽  
Jonathan Baza ◽  
George M. Rodgers

Abstract Abstract 1145 Severe plasma ADAMTS13 deficiency results in the clinical disorder thrombotic thrombocytopenic purpura. However, other potential pathophysiological roles of ADAMTS13 in endothelial cell biology remain unexplored. To assess the possible role of ADAMTS13 in angiogenesis, cell proliferation and migration of human umbilical vein endothelial cells (HUVEC) were studied in vitro. ADAMTS13 was found to be a highly potent chemoattractant, and additionally was capable of neutralizing VEGF activity in two angiogenesis assays-cell proliferation and cell migration. In the Boyden chamber cell migration assay, treatment of endothelial cells with exogenous recombinant ADAMTS13 promoted cell migration in a dose-dependent manner, with 1 ng/mL increasing cell migration across a gelatinized polycarbonate membrane by 14-fold. In the same model, 5 ng/mL VEGF165 (molar ratio of ADAMTS13:VEGF165 = 1/19) only increased cell migration by 7 fold. A steady decrease in endothelial cell migration was observed when the concentration of ADAMTS13 exceeded 1 ng/mL (Figure 1). Coincubation of 30 ng/mL ADAMTS13 with 6.16 ng/mL VEGF165 (molar ratio of ADAMTS13/VEGF165 = 1.3/1) inhibited endothelial cell migration by 45% compared to VEGF alone (Figure 2). A second model using an in vitro scratch-wound assay confirmed the Boyden chamber data. Substitution of ADAMTS13 with ADAM17, an analog of ADAMTS13 without the thrombospondin domain reversed the inhibition of VEGF-mediated cell migration, suggesting that the thrombospondin domain of ADAMTS13 is responsible for the inhibitory interaction with VEGF165. This finding was in agreement with our previously published co-immunoprecipitation assay data (Blood 2010, 116, 4307). Similar patterns of inhibition were observed with VEGF121 and VEGF189, indicating that other isoforms of VEGF may interact with the TSP domain of ADAMTS13. Using a manual proliferation assay method, HUVEC treated with 30 ng/mL ADAMTS13 and 6.16 ng/mL VEGF165 proliferated 40% slower than the control treated with VEGF alone. Combined with our findings on the inhibition of endothelial cell-tube formation in a Matrigel assay with ADAMTS13 and VEGF165 previously reported, our cumulative data suggest that 1) ADAMTS13 promotes angiogenesis by increasing cell migration and 2) ADAMTS13 can modulate VEGF-mediated angiogenic activities. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 36 (12) ◽  
pp. 845-850 ◽  
Author(s):  
Wei-Hong Hou ◽  
Tian-Yun Wagn ◽  
Bao-Mei Yuan ◽  
Yu-Rong Chai ◽  
Yan-Long Jia ◽  
...  

Abstract Human canstatin, a 24 kD fragment of the α2 chain of type IV collagen, has been proved to be one of the most effective inhibitors of angiogenesis and tumor growth. To investigate in vivo antiangiogenesis activity and in vitro effects on endothelial cell proliferation of recombinant mouse canstatin, the cDNA of mouse canstatin was introduced into an expression vector pQE40 to construct a prokaryotic expression vector pQE-mCan. The recombinant mouse canstatin efficiently expressed in E. coli M15 after IPTG induction was monitored by SDS-PAGE and by Western blotting with an anti-hexahistidine tag antibody. The expressed mouse canstatin, mainly as inclusion bodies, accounted for approximately 35% of the total bacterial proteins. The inclusion bodies were washed, lysed and purified by the nickel affinity chromatography to a purity of approximately 93%. The refolded mouse canstatin was tested on the chicken embryo chorioallantoic membranes (CAM), and a large number of newly formed blood vessels were significantly regressed. In addition, recombinant mouse canstatin potently inhibited endothelial cell proliferation with no inhibition on non-endothelial cells. Taken together, these findings demonstrate that the recombinant mouse canstatin effectively inhibited angiogenesis of the chicken embryo in a dose-dependent manner and specially suppressed in vitro the proliferation of human umbilical vein endothelial cells.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4293-4299 ◽  
Author(s):  
Nobuo Hisano ◽  
Yutaka Yatomi ◽  
Kaneo Satoh ◽  
Shigeo Akimoto ◽  
Masako Mitsumata ◽  
...  

Because sphingosine (Sph) is actively incorporated into platelets and rapidly converted to sphingosine 1-phosphate (Sph-1-P), which is then released extracellularly, it is important to study the effects of Sph and Sph-1-P on endothelial cells from the viewpoint of platelet-endothelial cell interaction. In this study, we found that Sph, as well as ceramide, induces apoptosis in human umbilical vein endothelial cells (HUVECs). In contrast, Sph-1-P acts as a HUVEC survival factor; this bioactive lipid was shown to protect HUVECs from apoptosis induced by the withdrawal of growth factors and to stimulate HUVEC DNA synthesis. In metabolic studies, [3H]Sph, incorporated into HUVECs, was converted to [3H]Cer and further to [3H]sphingomyelin in a time-dependent manner, whereas [3H]Sph-1-P formation from [3H]Sph was weak and transient. These findings in HUVECs are very different from those of platelets, which possess a highly active Sph kinase but lack Sph-1-P lyase. As a result, platelets abundantly store Sph-1-P, whereas HUVECs contain much less Sph-1-P. Finally, HUVECs, in contrast to platelets, failed to release Sph-1-P extracellularly, indicating that HUVECs themselves are not able to supply the survival factor Sph-1-P, but receive it from activated platelets. Our results suggest that platelets may maintain the integrity of endothelial cells by incorporating Sph and releasing Sph-1-P.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4293-4299 ◽  
Author(s):  
Nobuo Hisano ◽  
Yutaka Yatomi ◽  
Kaneo Satoh ◽  
Shigeo Akimoto ◽  
Masako Mitsumata ◽  
...  

Abstract Because sphingosine (Sph) is actively incorporated into platelets and rapidly converted to sphingosine 1-phosphate (Sph-1-P), which is then released extracellularly, it is important to study the effects of Sph and Sph-1-P on endothelial cells from the viewpoint of platelet-endothelial cell interaction. In this study, we found that Sph, as well as ceramide, induces apoptosis in human umbilical vein endothelial cells (HUVECs). In contrast, Sph-1-P acts as a HUVEC survival factor; this bioactive lipid was shown to protect HUVECs from apoptosis induced by the withdrawal of growth factors and to stimulate HUVEC DNA synthesis. In metabolic studies, [3H]Sph, incorporated into HUVECs, was converted to [3H]Cer and further to [3H]sphingomyelin in a time-dependent manner, whereas [3H]Sph-1-P formation from [3H]Sph was weak and transient. These findings in HUVECs are very different from those of platelets, which possess a highly active Sph kinase but lack Sph-1-P lyase. As a result, platelets abundantly store Sph-1-P, whereas HUVECs contain much less Sph-1-P. Finally, HUVECs, in contrast to platelets, failed to release Sph-1-P extracellularly, indicating that HUVECs themselves are not able to supply the survival factor Sph-1-P, but receive it from activated platelets. Our results suggest that platelets may maintain the integrity of endothelial cells by incorporating Sph and releasing Sph-1-P.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2703-2711 ◽  
Author(s):  
Ombretta Salvucci ◽  
Lei Yao ◽  
Sabrina Villalba ◽  
Agatha Sajewicz ◽  
Stefania Pittaluga ◽  
...  

Abstract The chemokine stromal-derived factor-1 (SDF-1) and its unique receptor, CXCR4, are required for normal cardiovascular development, but a critical role for SDF-1 in postnatal vascular remodeling and the mechanisms underlying SDF-1/CXCR-4 vasculogenesis are unclear. Here we show that SDF-1 is expressed by the vascular endothelium from selected healthy and tumor tissues. In vitro, primary endothelial cells constitutively express SDF-1 that is detected in the cytoplasm, on the cell surface, and in the culture supernatant. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) increase SDF-1 expression in endothelial cells. In functional studies, pertussis toxin and antibodies to SDF-1 or CXCR-4 disrupt extracellular matrix-dependent endothelial cell tube formation in vitro. This morphogenic process is associated with time-dependent modulation of surface CXCR-4 expression that changes from being diffuse to being polarized and subsequently lost. In vivo, pertussis toxin and neutralizing antibodies directed at SDF-1 inhibit growth factor–dependent neovascularization. These results indicate that SDF-1/CXCR-4 identifies VEGF- and bFGF-regulated autocrine signaling systems that are essential regulators of endothelial cell morphogenesis and angiogenesis.


2002 ◽  
Vol 283 (4) ◽  
pp. C1196-C1205 ◽  
Author(s):  
Baochong Gao ◽  
Thomas M. Saba ◽  
Min-Fu Tsan

Tumor necrosis factor-α (TNF-α), one of the major inflammatory cytokines, is known to influence endothelial cell migration. In this study, we demonstrate that exposure of calf pulmonary artery endothelial cells to TNF-α caused an increase in the formation of membrane protrusions and cell migration. Fluorescence microscopy revealed an increase in αvβ3focal contacts but a decrease in α5β1 focal contacts in TNF-α-treated cells. In addition, both cell-surface and total cellular expression of αvβ3-integrins increased significantly, whereas the expression of α5β1-integrins was unaltered. Only focal contacts containing αvβ3- but not α5β1-integrins were present in membrane protrusions of cells at the migration front. In contrast, robust focal contacts containing α5β1-integrins were present in cells behind the migration front. A blocking antibody to αvβ3, but not a blocking antibody to α5-integrins, significantly inhibited TNF-α-induced cell migration. These results indicate that in response to TNF-α, endothelial cells may increase the activation and ligation of αvβ3 while decreasing the activation and ligation of α5β1-integrins to facilitate cell migration, a process essential for vascular wound healing and angiogenesis.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Bin Ren ◽  
Devi P Ramakrishnan ◽  
Brian Walcott ◽  
Yiliang Chen ◽  
Brad Best ◽  
...  

Lysophosphatidic acid (LPA), a bioactive signaling phospholipid, down-regulates CD36 expression in microvascular endothelial cells (MVECs) via protein kinase PKD-1 signaling, thereby abolishing endothelial cell responses to its antiangiogenic ligand thrombospondin-1. However, little is known regarding mechanisms by which MVEC-specific CD36 transcription is regulated. We describe that in MVECs LPA represses CD36 transcription by activating a PKD-1 signaling that induces formation of a HDAC7/NCoR1/FoxO1 complex in the nucleus. Promoter analysis first identified FoxO1 as a transcription factor responsible for the CD36 transcription, which was confirmed by a chromatin-immunoprecipitation assay. Using a combination of PKD-1 gene transduction with co-immmunoprecipitation assay, we showed an increased interaction of HDAC7/NCoR1 with FoxO1 in response to LPA. However, HDAC7 and FoxO1 interaction was attenuated with PKD-1 silencing. Furthermore, based on results from an angiogenesis profiling with real time qPCR, doxycycline inducible constitutively active PKD-1 plasmids were transduced into tumor associated endothelial cells using a Lentiviral system to induce the PKD-1 expression. The results showed that turning off CD36 transcription reprograms by PKD-1 signaling was accompanied by an induced expression of ephrin B2 and activation of MAPK/ERK1/2 signaling, which are two critical “molecular signatures” involved in arteriogenesis. Moreover, three dimensional spheroid assay, a modified Boyden Chamber assay and in vivo Matrigel assay revealed that turning off CD36 transcription promoted angiogenesis in vitro and in vivo in a PKD-1-dependent manner. Immunofluorescence microscopy also showed the presence of this signaling pathway in the vasculature of Lewis lung carcinomas grown in cd36 deficient mice. In summary, our data suggest that a LPA-PKD-1-HDAC7/NCoR1-FoxO1 signaling axis is critical for transcriptional regulation of CD36 and mediates silencing of this antiangiogenic switch. This subsequently results in MVEC reprogramming for proangiogenic and arteriogenic responses. Therefore, targeting this signaling cascade could be a novel approach for malignant tumors, cardiovascular ischemia and other thrombotic diseases.


Sign in / Sign up

Export Citation Format

Share Document