scholarly journals Characterization of a Novel Yeast SNARE Protein Implicated in Golgi Retrograde Traffic

1997 ◽  
Vol 8 (12) ◽  
pp. 2659-2676 ◽  
Author(s):  
Vladimir V. Lupashin ◽  
Irina D. Pokrovskaya ◽  
James A. McNew ◽  
M. Gerard Waters

The protein trafficking machinery of eukaryotic cells is employed for protein secretion and for the localization of resident proteins of the exocytic and endocytic pathways. Protein transit between organelles is mediated by transport vesicles that bear integral membrane proteins (v-SNAREs) which selectively interact with similar proteins on the target membrane (t-SNAREs), resulting in a docked vesicle. A novelSaccharomyces cerevisiae SNARE protein, which has been termed Vti1p, was identified by its sequence similarity to known SNAREs. Vti1p is a predominantly Golgi-localized 25-kDa type II integral membrane protein that is essential for yeast viability. Vti1p can bind Sec17p (yeast SNAP) and enter into a Sec18p (NSF)-sensitive complex with the cis-Golgi t-SNARE Sed5p. This Sed5p/Vti1p complex is distinct from the previously described Sed5p/Sec22p anterograde vesicle docking complex. Depletion of Vti1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the Golgi. Temperature-sensitive mutants of Vti1p show a similar carboxypeptidase Y trafficking defect, but the secretion of invertase and gp400/hsp150 is not significantly affected. The temperature-sensitive vti1 growth defect can be rescued by the overexpression of the v-SNARE, Ykt6p, which physically interacts with Vti1p. We propose that Vti1p, along with Ykt6p and perhaps Sft1p, acts as a retrograde v-SNARE capable of interacting with the cis-Golgi t-SNARE Sed5p.

1999 ◽  
Vol 10 (7) ◽  
pp. 2407-2423 ◽  
Author(s):  
John G. S. Coe ◽  
Anthony C. B. Lim ◽  
Jing Xu ◽  
Wanjin Hong

Members of the syntaxin protein family participate in the docking–fusion step of several intracellular vesicular transport events. Tlg1p has been identified as a nonessential protein required for efficient endocytosis as well as the maintenance of normal levels of trans-Golgi network proteins. In this study we independently describe Tlg1p as an essential protein required for cell viability. Depletion of Tlg1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the early Golgi. Temperature-sensitive (ts) mutants of Tlg1p also accumulate the endoplasmic reticulum/cis-Golgi form of carboxypeptidase Y at the nonpermissive temperature (38°C) and exhibit underglycosylation of secreted invertase. Overexpression of Tlg1p complements the growth defect of vti1-11 at the nonpermissive temperature, whereas incomplete complementation was observed with vti1-1, further suggesting a role for Tlg1p in the Golgi apparatus. Overexpression of Sed5p decreases the viability of tlg1 ts mutants compared with wild-type cells, suggesting that tlg1 ts mutants are more susceptible to elevated levels of Sed5p. Tlg1p is able to bind His6-tagged Sec17p (yeast α-SNAP) in a dose-dependent manner and enters into a SNARE complex with Vti1p, Tlg2p, and Vps45p. Morphological analyses by electron microscopy reveal that cells depleted of Tlg1p or tlg1 ts mutants incubated at the restrictive temperature accumulate 40- to 50-nm vesicles and experience fragmentation of the vacuole.


1996 ◽  
Vol 16 (5) ◽  
pp. 2369-2377 ◽  
Author(s):  
C G Burd ◽  
P A Mustol ◽  
P V Schu ◽  
S D Emr

In the yeast Saccharomyces cerevisiae, mutations in vacuolar protein sorting (VPS) genes result in secretion of proteins normally localized to the vacuole. Characterization of the VPS pathway has provided considerable insight into mechanisms of protein sorting and vesicle-mediated intracellular transport. We have cloned VPS9 by complementation of the vacuolar protein sorting defect of vps9 cells, characterized its gene product, and investigated its role in vacuolar protein sorting. Cells with a vps9 disruption exhibit severe vacuolar protein sorting defects and a temperature-sensitive growth defect at 38 degrees C. Electron microscopic examination of delta vps9 cells revealed the appearance of novel reticular membrane structures as well as an accumulation of 40- to 50-nm-diameter vesicles, suggesting that Vps9p may be required for the consumption of transport vesicles containing vacuolar protein precursors. A temperature-conditional allele of vps9 was constructed and used to investigate the function of Vps9p. Immediately upon shifting of temperature-conditional vps9 cells to the nonpermissive temperature, newly synthesized carboxypeptidase Y was secreted, indicating that Vps9p function is directly required in the VPS pathway. Antibodies raised against Vps9p immunoprecipitate a rare 52-kDa protein that fractionates with cytosolic proteins following cell lysis and centrifugation. Analysis of the VPS9 DNA sequence predicts that Vps9p is related to human proteins that bind Ras and negatively regulate Ras-mediated signaling. We term the related regions of Vps9p and these Ras-binding proteins a GTPase binding homology domain and suggest that it defines a family of proteins that bind monomeric GTPases. Vps9p may bind and serve as an effector of a rab GTPase, like Vps2lp, required for vacuolar protein sorting.


2003 ◽  
Vol 14 (6) ◽  
pp. 2357-2371 ◽  
Author(s):  
Sophie Chantalat ◽  
Rëgis Courbeyrette ◽  
Francesca Senic-Matuglia ◽  
Catherine L. Jackson ◽  
Bruno Goud ◽  
...  

The Sec7 domain guanine nucleotide exchange factors (GEFs) for the GTPase ARF are highly conserved regulators of membrane dynamics and protein trafficking. The interactions of large ARF GEFs with cellular membranes for localization and/or activation are likely to participate in regulated recruitment of ARF and effectors. However, these interactions remain largely unknown. Here we characterize Gmh1p, the first Golgi transmembrane-domain partner of any of the high-molecular-weight ARF-GEFs. Gmh1p is an evolutionarily conserved protein. We demonstrate molecular interaction between the yeast Gmh1p and the large ARF-GEFs Gea1p and Gea2p. This interaction involves a domain of Gea1p and Gea2p that is conserved in the eukaryotic orthologues of the Gea proteins. A single mutation in a conserved amino acid residue of this domain is sufficient to abrogate the interaction, whereas the overexpression of Gmh1p can compensate in vivo defects caused by mutations in this domain. We show that Gmh1p is an integral membrane protein that localizes to the early Golgi in yeast and in human HeLa cells and cycles through the ER. Hence, we propose that Gmh1p acts as a positive Golgi-membrane partner for Gea function. These results are of general interest given the evolutionary conservation of both ARF-GEFs and the Gmh proteins.


Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 833-841
Author(s):  
Yu Jiang ◽  
Al Scarpa ◽  
Li Zhang ◽  
Shelly Stone ◽  
Ed Feliciano ◽  
...  

Abstract The BET3 gene in the yeast Saccharomyces cerevisiae encodes a 22-kD hydrophilic protein that is required for vesicular transport between the ER and Golgi complex. To gain insight into the role of Bet3p, we screened for genes that suppress the growth defect of the temperature-sensitive bet3 mutant at 34°. This high copy suppressor screen resulted in the isolation of a new gene, called BET5. BET5 encodes an essential 18-kD hydrophilic protein that in high copy allows growth of the bet3-1 mutant, but not other ER accumulating mutants. This strong and specific suppression is consistent with the fact that Bet3p and Bet5p are members of the same complex. Using PCR mutagenesis, we generated a temperature-sensitive mutation in BET5 (bet5-1) that blocks the transport of carboxypeptidase Y to the vacuole and prevents secretion of the yeast pheromone α-factor at 37°. The precursor forms of these proteins that accumulate in this mutant are indicative of a block in membrane traffic between the ER and Golgi apparatus. High copy suppressors of the bet5-1 mutant include several genes whose products are required for ER-to-Golgi transport (BET1, SEC22, USO1 and DSS4) and the maintenance of the Golgi (ANP1). These findings support the hypothesis that Bet5p acts in conjunction with Bet3p to mediate a late stage in ER-to-Golgi transport. The identification of mammalian homologues of Bet3p and Bet5p implies that the Bet3p/Bet5p complex is highly conserved in evolution.


Genetics ◽  
1988 ◽  
Vol 118 (4) ◽  
pp. 609-617
Author(s):  
M Winey ◽  
M R Culbertson

Abstract Two unlinked mutations that alter the enzyme activity of tRNA-splicing endonuclease have been identified in yeast. The sen1-1 mutation, which maps on chromosome 12, causes temperature-sensitive growth, reduced in vitro endonuclease activity, and in vivo accumulation of unspliced pre-tRNAs. The sen2-1 mutation does not confer a detectable growth defect, but causes a temperature-dependent reduction of in vitro endonuclease activity. Pre-tRNAs do not accumulate in sen2-1 strains. The in vitro enzyme activities of sen1-1 and sen2-1 complement in extracts from a heterozygous diploid, but fail to complement in mixed extracts from separate sen1-1 and sen2-1 haploid strains. These results suggest a direct role for SEN gene products in the enzymatic removal of introns from tRNA that is distinct from the role of other products known to affect tRNA splicing.


1999 ◽  
Vol 19 (11) ◽  
pp. 7461-7472 ◽  
Author(s):  
Yeganeh Zebarjadian ◽  
Tom King ◽  
Maurille J. Fournier ◽  
Louise Clarke ◽  
John Carbon

ABSTRACT In budding yeast (Saccharomyces cerevisiae), the majority of box H/ACA small nucleolar RNPs (snoRNPs) have been shown to direct site-specific pseudouridylation of rRNA. Among the known protein components of H/ACA snoRNPs, the essential nucleolar protein Cbf5p is the most likely pseudouridine (Ψ) synthase. Cbf5p has considerable sequence similarity to Escherichia coli TruBp, a known Ψ synthase, and shares the “KP” and “XLD” conserved sequence motifs found in the catalytic domains of three distinct families of known and putative Ψ synthases. To gain additional evidence on the role of Cbf5p in rRNA biosynthesis, we have used in vitro mutagenesis techniques to introduce various alanine substitutions into the putative Ψ synthase domain of Cbf5p. Yeast strains expressing these mutatedcbf5 genes in a cbf5Δ null background are viable at 25°C but display pronounced cold- and heat-sensitive growth phenotypes. Most of the mutants contain reduced levels of Ψ in rRNA at extreme temperatures. Substitution of alanine for an aspartic acid residue in the conserved XLD motif of Cbf5p (mutantcbf5D95A) abolishes in vivo pseudouridylation of rRNA. Some of the mutants are temperature sensitive both for growth and for formation of Ψ in the rRNA. In most cases, the impaired growth phenotypes are not relieved by transcription of the rRNA from a polymerase II-driven promoter, indicating the absence of polymerase I-related transcriptional defects. There is little or no abnormal accumulation of pre-rRNAs in these mutants, although preferential inhibition of 18S rRNA synthesis is seen in mutantcbf5D95A, which lacks Ψ in rRNA. A subset of mutations in the Ψ synthase domain impairs association of the altered Cbf5p proteins with selected box H/ACA snoRNAs, suggesting that the functional catalytic domain is essential for that interaction. Our results provide additional evidence that Cbf5p is the Ψ synthase component of box H/ACA snoRNPs and suggest that the pseudouridylation of rRNA, although not absolutely required for cell survival, is essential for the formation of fully functional ribosomes.


1997 ◽  
Vol 17 (9) ◽  
pp. 5001-5015 ◽  
Author(s):  
N I Zanchin ◽  
P Roberts ◽  
A DeSilva ◽  
F Sherman ◽  
D S Goldfarb

The Saccharomyces cerevisiae temperature-sensitive (ts) allele nip7-1 exhibits phenotypes associated with defects in the translation apparatus, including hypersensitivity to paromomycin and accumulation of halfmer polysomes. The cloned NIP7+ gene complemented the nip7-1 ts growth defect, the paromomycin hypersensitivity, and the halfmer defect. NIP7 encodes a 181-amino-acid protein (21 kDa) with homology to predicted products of open reading frames from humans, Caenorhabditis elegans, and Arabidopsis thaliana, indicating that Nip7p function is evolutionarily conserved. Gene disruption analysis demonstrated that NIP7 is essential for growth. A fraction of Nip7p cosedimented through sucrose gradients with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Nip7p was found evenly distributed throughout the cytoplasm and nucleus by indirect immunofluorescence; however, in vivo localization of a Nip7p-green fluorescent protein fusion protein revealed that a significant amount of Nip7p is present inside the nucleus, most probably in the nucleolus. Depletion of Nip7-1p resulted in a decrease in protein synthesis rates, accumulation of halfmers, reduced levels of 60S subunits, and, ultimately, cessation of growth. Nip7-1p-depleted cells showed defective pre-rRNA processing, including accumulation of the 35S rRNA precursor, presence of a 23S aberrant precursor, decreased 20S pre-rRNA levels, and accumulation of 27S pre-rRNA. Delayed processing of 27S pre-rRNA appeared to be the cause of reduced synthesis of 25S rRNA relative to 18S rRNA, which may be responsible for the deficit of 60S subunits in these cells.


2001 ◽  
Vol 21 (23) ◽  
pp. 7981-7994 ◽  
Author(s):  
Chris Mullins ◽  
Juan S. Bonifacino

ABSTRACT The GGAs (Golgi-localized, gamma-ear-containing, ARF-binding proteins) are a family of multidomain adaptor proteins involved in protein sorting at the trans-Golgi network of eukaryotic cells. Here we present results from a functional characterization of the two Saccharomyces cerevisiae GGAs, Gga1p and Gga2p. We show that deletion of both GGA genes causes defects in sorting of carboxypeptidase Y (CPY) and proteinase A to the vacuole, vacuolar morphology, and maturation of α-factor. A structure-function analysis reveals a requirement of the VHS, GAT, and hinge for function, while the GAE domain is less important. We identify putative clathrin-binding motifs in the hinge domain of both yeast GGAs. These motifs are shown to mediate clathrin binding in vitro. While mutation of these motifs alone does not block function of the GGAs in vivo, combining these mutations with truncations of the hinge and GAE domains diminishes function, suggesting functional cooperation between different clathrin-binding elements. Thus, these observations demonstrate that the yeast GGAs play important roles in the CPY pathway, vacuole biogenesis, and α-factor maturation and identify structural determinants that are critical for these functions.


1999 ◽  
Vol 67 (5) ◽  
pp. 2225-2232 ◽  
Author(s):  
Gregory Govoni ◽  
François Canonne-Hergaux ◽  
Cheryl G. Pfeifer ◽  
Sandra L. Marcus ◽  
Scott D. Mills ◽  
...  

ABSTRACT Mutations at the Nramp1 locus in vivo cause susceptibility to infection by unrelated intracellular microbes.Nramp1 encodes an integral membrane protein abundantly expressed in the endosomal-lysosomal compartment of macrophages and is recruited to the phagosomal membrane following phagocytosis. The mechanism by which Nramp1 affects the biochemical properties of the phagosome to control microbial replication is unknown. To devise an in vitro assay for Nramp1 function, we introduced a wild-typeNramp1G169 cDNA into RAW 264.7 macrophages (which bear a homozygous mutant Nramp1D169 allele and thus are permissive to replication of specific intracellular parasites). Recombinant Nramp1 was expressed in a membranous compartment in RAW264.7 cells and was recruited to the membrane ofSalmonella typhimurium and Yersinia enterocolitica containing phagosomes. Evaluation of the antibacterial activity of RAW264.7 transfectants showed that expression of the recombinant Nramp1 protein abrogated intracellular replication of S. typhimurium. Studies with a replication-defectiveS. typhimurium mutant suggest that this occurs through an enhanced bacteriostatic activity. The effect of Nramp1 expression was specific, since (i) it was not seen in RAW264.7 transfectants overexpressing the closely related Nramp2 protein, and (ii) control RAW264.7 cells, Nramp1, and Nramp2 transfectants could all efficiently kill a temperature-sensitive, replication-defective mutant of S. typhimurium. Finally, increased antibacterial activity of the Nramp1 RAW264.7 transfectants was linked to increased phagosomal acidification, a distinguishing feature of primary macrophages expressing a wild-type Nramp1 allele. Together, these results indicate that transfection of Nramp1 cDNAs in the RAW264.7 macrophage cell line can be used as a direct assay to study both Nramp1 function and mechanism of action as well as to identify structure-function relationships in this protein.


1995 ◽  
Vol 15 (1) ◽  
pp. 69-75 ◽  
Author(s):  
A E Adams ◽  
W Shen ◽  
C S Lin ◽  
J Leavitt ◽  
P Matsudaira

The actin cytoskeleton is a fundamental component of eukaryotic cells, with both structural and motile roles. Actin and many of the actin-binding proteins found in different cell types are highly conserved, showing considerable similarity in both primary structure and biochemical properties. To make detailed comparisons between homologous proteins, it is necessary to know whether the various proteins are functionally, as well as structurally, conserved. Fimbrin is an example of a cytoskeletal component that, as shown by sequence determinations and biochemical characterizations, is conserved between organisms as diverse as Saccharomyces cerevisiae and humans. In this study, we examined whether the human homolog can substitute for the yeast protein in vivo. We report here that two isoforms of human fimbrin, also referred to as T- and L-plastin, can both substitute in vivo for yeast fimbrin, also known as Sac6p, whereas a third isoform, I-fimbrin (or I-plastin), cannot. We demonstrate that the human T- and L-fimbrins, in addition to complementing the temperature-sensitive growth defect of the sac6 null mutant, restore both normal cytoskeletal organization and cell shape to the mutant cells. In addition, we show that human T- and L-fimbrins can complement a sporulation defect caused by the sac6 null mutation. These findings indicate that there is a high degree of functional conservation in the cytoskeleton, even between organisms as diverse as S. cerevisiae and humans.


Sign in / Sign up

Export Citation Format

Share Document