scholarly journals Palmitoylation-dependent Estrogen Receptor α Membrane Localization: Regulation by 17β-Estradiol

2005 ◽  
Vol 16 (1) ◽  
pp. 231-237 ◽  
Author(s):  
Filippo Acconcia ◽  
Paolo Ascenzi ◽  
Alessio Bocedi ◽  
Enzo Spisni ◽  
Vittorio Tomasi ◽  
...  

A fraction of the nuclear estrogen receptor α (ERα) is localized to the plasma membrane region of 17β-estradiol (E2) target cells. We previously reported that ERα is a palmitoylated protein. To gain insight into the molecular mechanism of ERα residence at the plasma membrane, we tested both the role of palmitoylation and the impact of E2 stimulation on ERα membrane localization. The cancer cell lines expressing transfected or endogenous human ERα (HeLa and HepG2, respectively) or the ERα nonpalmitoylable Cys447Ala mutant transfected in HeLa cells were used as experimental models. We found that palmitoylation of ERα enacts ERα association with the plasma membrane, interaction with the membrane protein caveolin-1, and nongenomic activities, including activation of signaling pathways and cell proliferation (i.e., ERK and AKT activation, cyclin D1 promoter activity, DNA synthesis). Moreover, E2 reduces both ERα palmitoylation and its interaction with caveolin-1, in a time- and dose-dependent manner. These data point to the physiological role of ERα palmitoylation in the receptor localization to the cell membrane and in the regulation of the E2-induced cell proliferation.

Endocrinology ◽  
2004 ◽  
Vol 145 (1) ◽  
pp. 113-125 ◽  
Author(s):  
Dong-bao Chen ◽  
Ian M. Bird ◽  
Jing Zheng ◽  
Ronald R. Magness

Abstract Rapid uterine vasodilatation after estrogen administration is believed to be mediated by endothelial production of nitric oxide (NO) via endothelial NO synthase (eNOS). However, the mechanism(s) by which estrogen activates eNOS in uterine artery endothelial cells (UAEC) is unknown. In this study, we observed that estradiol-17β (E2) and E2-BSA rapidly (<2 min) increased total NOx production in UAEC in vitro. This was associated with rapid eNOS phosphorylation and activation but was unaltered by pretreatment with actinomycin-D. estrogen receptor-α protein was detectable in isolated plasma membrane proteins by immunoblotting, and E2-BSA-fluorescein isothiocyanate binding was evident on the plasma membrane of UAEC. E2 did not mobilize intracellular Ca2+, but E2 and ionomycin in combination induced greater eNOS phosphorylation than either E2 or ionomycin alone. E2 did not stimulate rapid Akt phosphorylation. E2 stimulated rapid ERK2/1 activation in a time- and dose-dependent manner, with maximal responses observed at 5–10 min with E2 (10 nm to 1 μm) treatment. Acute activation of eNOS and NOx production by E2 could be inhibited by PD98059 but not by LY294002. When E2-BSA was applied, similar responses in NOx production, eNOS, and ERK2/1 activation to those of E2 were achieved. In addition, E2 and E2-BSA-induced ERK2/1 activation and ICI 182,780 could inhibit NOx production by E2. Thus, acute activation of eNOS to produce NO in UAEC by estrogen is at least partially through an ERK pathway, possibly via estrogen receptor localized on the plasma membrane. This pathway may provide a novel mechanism for NO-mediated rapid uterine vasodilatation by estrogen.


2004 ◽  
Vol 101 (7) ◽  
pp. 2076-2081 ◽  
Author(s):  
Robert X. Song ◽  
Christopher J. Barnes ◽  
Zhenguo Zhang ◽  
Yongde Bao ◽  
Rakesh Kumar ◽  
...  

2005 ◽  
Vol 288 (2) ◽  
pp. E388-E397 ◽  
Author(s):  
Nataliya N. Bulayeva ◽  
Ann L. Wozniak ◽  
L. Leanne Lash ◽  
Cheryl S. Watson

The role of membrane estrogen receptor-α (mERα) in rapid nongenomic responses to 17β-estradiol (E2) was tested in sublines of GH3/B6 rat prolactinoma cells selected for high (GH3/B6/F10) and low (GH3/B6/D9) mERα expression. E2 elicited rapid, concentration-dependent intracellular Ca2+ concentration ([Ca2+]i) increases in the F10 subline. Lack of inhibition by thapsigargin depletion of intracellular Ca2+ pools, together with abrogation of the response in Ca2+-free medium, suggested an extracellular source of Ca2+ for this response. The participation of voltage-dependant channels in the E2-induced [Ca2+]i increase was confirmed by the specific L-type Ca2+ channel inhibitor nifedipine. For comparison, the D9 mERα-depleted subline was insensitive to steroid action via this signaling mechanism. [Ca2+]i elevation was correlated with prolactin (PRL) release in the F10 cell line in as little as 3 min. E2 caused a much higher PRL release than KCl treatment (which caused maximal Ca2+ elevation), suggesting that secretion was also controlled by additional mechanisms. Participation of mERα in these effects was confirmed by the ability of E2-peroxidase (a cell-impermeable analog of E2) to cause these responses, blockage of the responses with the ER antagonist ICI 182 780, and the inability of the E2 stereoisomer 17α-E2 to elicit a response. Thus rapid exocytosis of PRL is regulated in these cells by mERα signaling to specific Ca2+ channels utilizing extracellular Ca2+ sources and additional signaling mechanisms.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Gan Xiaoling ◽  
Liu Shuaibin ◽  
Liang Kailu

Abstract Background To investigated the role of miR-19b-3p in regulating bone marrow mesenchymal stem cell (BMSC) proliferation and osteoblast differentiation. Methods The expression of miR-19b-3p and lncRNA H19 were measured in postmenopausal osteoporosis patients and BMP-22 induced BMSCs using qRT-PCR. MiR-19b-3p mimic or inhibitor was transfected into BMP-2 induced BMSCs. Cell proliferation was measured by BrdU method. Protein expression of RUNX2 and COL1A1 were measured by western blot. PcDNA3.1-lncRNA H19 with or without miR-19b-3p mimic was transfected into BMP-2 induced BMSCs. Results The expression of miR-19b-3p was significantly up-regulated in postmenopausal osteoporosis patients and BMP-2 induced BMSCs. MiR-19b-3p overexpression dramatically elevated, while miR-19b-3p inhibition decreased cell proliferation of BMSCs. Additionally, protein expression levels of RUNX2 and COL1A1, as well as ALP activity were significantly promoted by miR-19b-3p mimic transfection and inhibited by miR-19b-3p inhibitor transfection. LncRNA H19 was obviously down-regulated in postmenopausal osteoporosis patients. H19 overexpression significantly decreased cell proliferation and differentiation by down-regulating miR-19b-3p. Moreover, the expression of miR-19b-3p was inhibited, while H19 elvated in 17β-estradiol (E2) treated BMSCs in a dose-dependent manner. Conclusion These data were the first to reveal the critical role of H19/miR-19b-3p in postmenopausal osteoporosis, and provided a new therapeutic target for OP.


2012 ◽  
Vol 355 (1) ◽  
pp. 169-179 ◽  
Author(s):  
Silvina Gutiérrez ◽  
Liliana d V. Sosa ◽  
Juan P. Petiti ◽  
Jorge H. Mukdsi ◽  
Iván D. Mascanfroni ◽  
...  

2015 ◽  
Vol 27 (12) ◽  
pp. 2380-2388 ◽  
Author(s):  
Valeria Pesiri ◽  
Pierangela Totta ◽  
Marco Segatto ◽  
Fabrizio Bianchi ◽  
Valentina Pallottini ◽  
...  

2006 ◽  
Vol 13 (Supplement_1) ◽  
pp. S3-S13 ◽  
Author(s):  
Robert X-D Song ◽  
Ping Fan ◽  
Wei Yue ◽  
Yucai Chen ◽  
Richard J Santen

Our recent studies have examined the role of various receptor complexes in the mediation of rapid, extranuclear effects of estradiol. This review describes 17β-estradiol (E2)-initiated extranuclear signaling pathways, which involve the insulin-like growth factor 1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) and result in the activation of several kinase cascades. The biologic results of these effects are the enhancement of cell proliferation and diminution of programmed cell death (apoptosis). Until recently, most studies assigned priority to the nuclear transcriptional actions of estrogen receptor α (ERα). Present investigative emphasis focuses on the additional importance of ERα residing in or near the plasma membrane. A small fraction of ERα is associated with the cell membrane and mediates the rapid effects of E2. Unlike classical growth factor receptors, such as IGF-1R and EGFR, ERα has no transmembrane and kinase domains and is known to initiate E2 rapid signals by forming protein/protein complexes with many signaling molecules. Our recent studies demonstrate that the IGF-1R is involved in tethering ERα to the plasma membrane, in activating the EGFR, and in the initiation of mitogen-activated protein kinase and phosphoinositide 3-kinase signaling. The formation of a multi-protein complex containing these receptors as well as adaptor proteins is a critical step in this process. A full understanding of the mechanisms underlying these relationships with the ultimate aim of abrogating specific steps, should lead to more targeted strategies for treatment of hormone-dependent breast cancer.


2009 ◽  
Vol 512 (3) ◽  
pp. 347-358 ◽  
Author(s):  
Martha A. Bosch ◽  
Jingwen Hou ◽  
Yuan Fang ◽  
Martin J. Kelly ◽  
Oline K. RØnnekleiv

Sign in / Sign up

Export Citation Format

Share Document