scholarly journals Access to Ribosomal Protein Rpl25p by the Signal Recognition Particle Is Required for Efficient Cotranslational Translocation

2008 ◽  
Vol 19 (7) ◽  
pp. 2876-2884 ◽  
Author(s):  
Jane A. Dalley ◽  
Alexander Selkirk ◽  
Martin R. Pool

Targeting of proteins to the endoplasmic reticulum (ER) occurs cotranslationally necessitating the interaction of the signal recognition particle (SRP) and the translocon with the ribosome. Biochemical and structural studies implicate ribosomal protein Rpl25p as a major ribosome interaction site for both these factors. Here we characterize an RPL25GFP fusion, which behaves as a dominant mutant leading to defects in co- but not posttranslational translocation in vivo. In these cells, ribosomes still interact with ER membrane and the translocon, but are defective in binding SRP. Overexpression of SRP can restore ribosome binding of SRP, but only partially rescues growth and translocation defects. Our results indicate that Rpl25p plays a critical role in the recruitment of SRP to the ribosome.

2002 ◽  
Vol 184 (12) ◽  
pp. 3260-3267 ◽  
Author(s):  
R. Wesley Rose ◽  
Mechthild Pohlschröder

ABSTRACT The evolutionarily conserved signal recognition particle (SRP) plays an integral role in Sec-mediated cotranslational protein translocation and membrane protein insertion, as it has been shown to target nascent secretory and membrane proteins to the bacterial and eukaryotic translocation pores. However, little is known about its function in archaea, since characterization of the SRP in this domain of life has thus far been limited to in vitro reconstitution studies of heterologously expressed archaeal SRP components identified by sequence comparisons. In the present study, the genes encoding the SRP54, SRP19, and 7S RNA homologs (hv54h, hv19h, and hv7Sh, respectively) of the genetically and biochemically tractable archaeon Haloferax volcanii were cloned, providing the tools to analyze the SRP in its native host. As part of this analysis, an hv54h knockout strain was created. In vivo characterization of this strain revealed that the archaeal SRP is required for viability, suggesting that cotranslational protein translocation is an essential process in archaea. Furthermore, a method for the purification of this SRP employing nickel chromatography was developed in H. volcanii, allowing the successful copurification of (i) Hv7Sh with a histidine-tagged Hv54h, as well as (ii) Hv54h and Hv7Sh with a histidine-tagged Hv19h. These results provide the first in vivo evidence that these components interact in archaea. Such copurification studies will provide insight into the significance of the similarities and differences of the protein-targeting systems of the three domains of life, thereby increasing knowledge about the recognition of translocated proteins in general.


2016 ◽  
Vol 36 (18) ◽  
pp. 2374-2383 ◽  
Author(s):  
Ying Zhang ◽  
Thea Schäffer ◽  
Tina Wölfle ◽  
Edith Fitzke ◽  
Gerhard Thiel ◽  
...  

Targeting of transmembrane proteins to the endoplasmic reticulum (ER) proceeds via either the signal recognition particle (SRP) or the guided entry of tail-anchored proteins (GET) pathway, consisting of Get1 to -5 and Sgt2. While SRP cotranslationally targets membrane proteins containing one or multiple transmembrane domains, the GET pathway posttranslationally targets proteins containing a single C-terminal transmembrane domain termed the tail anchor. Here, we dissect the roles of the SRP and GET pathways in the sorting of homologous, two-membrane-spanning K+channel proteins termed Kcv, Kesv, and Kesv-VV. We show that Kcv is targeted to the ER cotranslationally via its N-terminal transmembrane domain, while Kesv-VV is targeted posttranslationally via its C-terminal transmembrane domain, which recruits Get4-5/Sgt2 and Get3. Unexpectedly, nascent Kcv recruited not only SRP but also the Get4-5 module of the GET pathway to ribosomes. Ribosome binding of Get4-5 was independent of Sgt2 and was strongly outcompeted by SRP. The combined data indicate a previously unrecognized cotranslational interplay between the SRP and GET pathways.


1993 ◽  
Vol 13 (3) ◽  
pp. 1353-1362
Author(s):  
D Selinger ◽  
P Brennwald ◽  
X Liao ◽  
J A Wise

Signal recognition particle (SRP) is a ribonucleoprotein composed of six polypeptides and a single RNA molecule. SRP RNA can be divided into four structural domains, the last of which is the most highly conserved and, in Schizosaccharomyces pombe, is the primary location to which deleterious mutations map. The ability of mammalian SRP54 protein (SRP54p) to bind Escherichia coli 4.5S RNA, a homolog of SRP RNA which contains only domain IV, suggested that SRP54p might interact directly with this region. To determine whether domain IV is critical for SRP54p binding in fission yeast cells, we used a native immunoprecipitation-RNA sequencing assay to test 13 mutant SRP RNAs for the ability to associate with the protein in vivo. The G156A mutation, which alters the 5' residue of the noncanonical first base pair of the domain IV terminal helix and confers a mild conditional growth defect, reduces assembly of the RNA with SRP54p. Mutating either of the two evolutionarily invariant residues in the bulged region 5' to G156 is more deleterious to growth and virtually abolishes SRP54p binding. We conclude that the conservation of nucleotides 154 to 156 is likely to be a consequence of their role as a sequence-specific recognition element for the SRP54 protein. We also tested a series of mutants with nucleotide substitutions in the conserved tetranucleotide loop and adjoining stem of domain IV. Although tetraloop mutations are deleterious to growth, they have little effect on SRP54p binding. Mutations which disrupt the base pair flanking the tetraloop result in conditional growth defects and significantly reduce association with SRP54p. Disruption of the other two base pairs in the short stem adjacent to the tetranucleotide loop has similar but less dramatic effects on SRP54p binding. These data provide the first evidence that both sequence-specific contacts and the structural integrity of domain IV of SRP RNA are important for assembly with SRP54p.


1992 ◽  
Vol 116 (3) ◽  
pp. 605-616 ◽  
Author(s):  
D S Yaver ◽  
S Matoba ◽  
D M Ogrydziak

Replacement of the signal recognition particle (SRP) 7S gene (SCR1) on a replicating plasmid with scr1-1 (G to A at 129 and A to T at 131 in the consensus sequence -GNAR- in the loop of domain III) resulted in temperature sensitivity for growth of cells in which both chromosomal SRP 7S RNA genes were deleted. Pulse-chase immunoprecipitation experiments were done after a shift to non-permissive temperature using the major secreted protein the alkaline extracellular protease (AEP) as a reporter molecule. No untranslocated AEP precursor was detected in a strain with scr1-1 on a plasmid, but the amount of the largest AEP precursor (55 kD) immunoprecipitated as a percentage of total protein synthesized was reduced 68% compared to an isogenic strain with SCR1 on the plasmid. The possibility that an untranslocated precursor was synthesized but not detected because of instability was largely eliminated by detection of a 53-kD untranslocated precursor of a mutated AEP (P17M; methionine replaced proline in the second position of the pro-peptide) which chased to the 55-kD translocated AEP precursor. Thus, SRP has a role in the biosynthesis of AEP. Possibly, the scr1-1 mutation does not affect signal recognition or translational arrest but instead results in maintenance of translational arrest of AEP synthesis. The results also suggest that AEP can be translocated in vivo either co-translationally in which SRP is at least involved in biosynthesis or posttranslationally without SRP involvement.


2005 ◽  
Vol 168 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Zhiliang Cheng ◽  
Ying Jiang ◽  
Elisabet C. Mandon ◽  
Reid Gilmore

The cytoplasmic surface of Sec61p is the binding site for the ribosome and has been proposed to interact with the signal recognition particle receptor during targeting of the ribosome nascent chain complex to the translocation channel. Point mutations in cytoplasmic loops six (L6) and eight (L8) of yeast Sec61p cause reductions in growth rates and defects in the translocation of nascent polypeptides that use the cotranslational translocation pathway. Sec61 heterotrimers isolated from the L8 sec61 mutants have a greatly reduced affinity for 80S ribosomes. Cytoplasmic accumulation of protein precursors demonstrates that the initial contact between the large ribosomal subunit and the Sec61 complex is important for efficient insertion of a nascent polypeptide into the translocation pore. In contrast, point mutations in L6 of Sec61p inhibit cotranslational translocation without significantly reducing the ribosome-binding activity, indicating that the L6 and L8 sec61 mutants affect different steps in the cotranslational translocation pathway.


2005 ◽  
Vol 187 (9) ◽  
pp. 2983-2991 ◽  
Author(s):  
Damon Huber ◽  
Dana Boyd ◽  
Yu Xia ◽  
Michael H. Olma ◽  
Mark Gerstein ◽  
...  

ABSTRACT We have previously reported that the DsbA signal sequence promotes efficient, cotranslational translocation of the cytoplasmic protein thioredoxin-1 via the bacterial signal recognition particle (SRP) pathway. However, two commonly used signal sequences, those of PhoA and MalE, which promote export by a posttranslational mechanism, do not export thioredoxin. We proposed that this difference in efficiency of export was due to the rapid folding of thioredoxin in the cytoplasm; cotranslational export by the DsbA signal sequence avoids the problem of cytoplasmic folding (C. F. Schierle, M. Berkmen, D. Huber, C. Kumamoto, D. Boyd, and J. Beckwith, J. Bacteriol. 185 :5706-5713, 2003). Here, we use thioredoxin as a reporter to distinguish SRP-dependent from non-SRP-dependent cleavable signal sequences. We screened signal sequences exhibiting a range of hydrophobicity values based on a method that estimates hydrophobicity. Successive iterations of screening and refining the method defined a threshold hydrophobicity required for SRP recognition. While all of the SRP-dependent signal sequences identified were above this threshold, there were also a few signal sequences above the threshold that did not utilize the SRP pathway. These results suggest that a simple measure of the hydrophobicity of a signal sequence is an important but not a sufficient indicator for SRP recognition. In addition, by fusing a number of both classes of signal sequences to DsbA, we found that DsbA utilizes an SRP-dependent signal sequence to achieve efficient export to the periplasm. Our results suggest that those proteins found to be exported by SRP-dependent signal sequences may require this mode of export because of their tendency to fold rapidly in the cytoplasm.


1992 ◽  
Vol 3 (8) ◽  
pp. 895-911 ◽  
Author(s):  
S C Ogg ◽  
M A Poritz ◽  
P Walter

In mammalian cells, the signal recognition particle (SRP) receptor is required for the targeting of nascent secretory proteins to the endoplasmic reticulum (ER) membrane. We have identified the Saccharomyces cerevisiae homologue of the alpha-subunit of the SRP receptor (SR alpha) and characterized its function in vivo. S. cerevisiae SR alpha is a 69-kDa peripheral membrane protein that is 32% identical (54% chemically similar) to its mammalian homologue and, like mammalian SR alpha, is predicted to contain a GTP binding domain. Yeast cells that contain the SR alpha gene (SRP101) under control of the GAL1 promoter show impaired translocation of soluble and membrane proteins across the ER membrane after depletion of SR alpha. The degree of the translocation defect varies for different proteins. The defects are similar to those observed in SRP deficient cells. Disruption of the SRP101 gene results in an approximately sixfold reduction in the growth rate of the cells. Disruption of the gene encoding SRP RNA (SCR1) or both SCR1 and SRP101 resulted in an indistinguishable growth phenotype, indicating that SRP receptor and SRP function in the same pathway. Taken together, these results suggest that the components and the mechanism of the SRP-dependent protein targeting pathway are evolutionarily conserved yet not essential for cell growth. Surprisingly, cells that are grown for a prolonged time in the absence of SRP or SRP receptor no longer show pronounced protein translocation defects. This adaptation is a physiological process and is not due to the accumulation of a suppressor mutation. The degree of this adaptation is strain dependent.


2008 ◽  
Vol 76 (6) ◽  
pp. 2612-2619 ◽  
Author(s):  
Jason W. Rosch ◽  
Luis Alberto Vega ◽  
John M. Beyer ◽  
Ada Lin ◽  
Michael G. Caparon

ABSTRACT The signal recognition particle (SRP) pathway is a universally conserved pathway for targeting polypeptides for secretion via the cotranslational pathway. In particular, the SRP pathway is thought to be the main mechanism for targeting polypeptides in gram-positive bacteria, including a number of important human pathogens. Though widely considered to be an essential cellular component, recent advances have indicated this pathway may be dispensable in gram-positive bacteria of the genus Streptococcus under in vitro conditions. However, its importance for the pathogenesis of streptococcal disease is unknown. In this study, we investigated the importance of the SRP pathway for virulence factor secretion in the human pathogen Streptococcus pyogenes. While the SRP pathway was not found to be essential for viability in vitro, SRP mutants demonstrated a medium-specific growth defect that could be rescued by the addition of glucose. We also observed that a distinct subset of virulence factors were dependent upon the SRP pathway for secretion, whereas others were completely independent of this pathway. Significantly, deletion of the SRP pathway resulted in mutants that were highly attenuated in both a zebrafish model of necrotic myositis and a murine subcutaneous ulcer model, highlighting the importance of this pathway in vivo. These studies emphasize the importance of the SRP pathway for the in vivo survival and pathogenesis of S. pyogenes.


2003 ◽  
Vol 185 (19) ◽  
pp. 5697-5705 ◽  
Author(s):  
Christina Wilson Bowers ◽  
Fion Lau ◽  
Thomas J. Silhavy

ABSTRACT LamB-LacZ fusion proteins have classically been used in studies of the general secretion pathway of Escherichia coli. Here we describe how increasing signal sequence hydrophobicity routes LamB-LacZ Hyb42-1 to the signal recognition particle (SRP) pathway. Secretion of this hydrophobic fusion variant (H*LamB-LacZ) was reduced in the absence of fully functional Ffh and Ffs, and the translocator jamming caused by Hyb42-1 was prevented by efficient delivery of the fusion to the periplasm. Finally, we found that in the absence of the ribosome-associated chaperone, trigger factor (Tig), LamB-LacZ localized to the periplasm in a SecA-dependent, SRP-independent fashion. Collectively, our results provide compelling in vivo evidence that there is an SRP-dependent cotranslational targeting mechanism in E. coli and argue against a role for trigger factor in pathway discrimination.


Science ◽  
2018 ◽  
Vol 359 (6376) ◽  
pp. 689-692 ◽  
Author(s):  
Elizabeth A. Costa ◽  
Kelly Subramanian ◽  
Jodi Nunnari ◽  
Jonathan S. Weissman

The signal recognition particle (SRP) enables cotranslational delivery of proteins for translocation into the endoplasmic reticulum (ER), but its full in vivo role remains incompletely explored. We combined rapid auxin-induced SRP degradation with proximity-specific ribosome profiling to define SRP’s in vivo function in yeast. Despite the classic view that SRP recognizes amino-terminal signal sequences, we show that SRP was generally essential for targeting transmembrane domains regardless of their position relative to the amino terminus. By contrast, many proteins containing cleavable amino-terminal signal peptides were efficiently cotranslationally targeted in SRP’s absence. We also reveal an unanticipated consequence of SRP loss: Transcripts normally targeted to the ER were mistargeted to mitochondria, leading to mitochondrial defects. These results elucidate SRP’s essential roles in maintaining the efficiency and specificity of protein targeting.


Sign in / Sign up

Export Citation Format

Share Document