scholarly journals Phosphorylation-dependent Pex11p and Fis1p interaction regulates peroxisome division

2012 ◽  
Vol 23 (7) ◽  
pp. 1307-1315 ◽  
Author(s):  
Saurabh Joshi ◽  
Gaurav Agrawal ◽  
Suresh Subramani

Peroxisome division is regulated by the conserved peroxin Pex11p. In Saccharomyces cerevisiae (Sc), induction of the phosphoprotein ScPex11p coincides with peroxisome biogenesis. We show that the ScPex11p homologue in Pichia pastoris (PpPex11p) is phosphorylated at serine 173. PpPex11p expression and phosphorylation are induced in oleate and coordinated with peroxisome biogenesis. PpPex11p transits to peroxisomes via the endoplasmic reticulum (ER). PpPex11p is unstable and ER restricted gin pex3Δ and pex19Δ cells, which are impaired in peroxisomal membrane protein biogenesis. In oleate medium, the P. pastoris mutants pex11A (constitutively unphosphorylated; S173A) and pex11D (constitutively phosphorylated; S173D) exhibit juxtaposed elongated peroxisomes (JEPs) and hyperdivided forms, respectively, although protein levels remain unchanged. In contrast with ScPex11p, the ER-to-peroxisome translocation in P. pastoris is phosphorylation independent, and the phosphorylation occurs at the peroxisome. We show that PpPex11p interacts with the peroxisome fission machinery via PpFis1p and is regulated by phosphorylation because PpPex11p and PpPex11Dp interact more strongly with PpFis1p than PpPex11Ap. Neither PpPex11p nor PpFis1p is necessary for peroxisome division in methanol medium. We propose a model for the role of PpPex11p in the regulation of peroxisome division through a phosphorylation-dependent interaction with the fission machinery, providing novel insights into peroxisome morphogenesis.

2001 ◽  
Vol 114 (11) ◽  
pp. 2199-2204 ◽  
Author(s):  
Tineke Voorn-Brouwer ◽  
Astrid Kragt ◽  
Henk F. Tabak ◽  
Ben Distel

The classic model for peroxisome biogenesis states that new peroxisomes arise by the fission of pre-existing ones and that peroxisomal matrix and membrane proteins are recruited directly from the cytosol. Recent studies challenge this model and suggest that some peroxisomal membrane proteins might traffic via the endoplasmic reticulum to peroxisomes. We have studied the trafficking in human fibroblasts of three peroxisomal membrane proteins, Pex2p, Pex3p and Pex16p, all of which have been suggested to transit the endoplasmic reticulum before arriving in peroxisomes. Here, we show that targeting of these peroxisomal membrane proteins is not affected by inhibitors of COPI and COPII that block vesicle transport in the early secretory pathway. Moreover, we have obtained no evidence for the presence of these peroxisomal membrane proteins in compartments other than peroxisomes and demonstrate that COPI and COPII inhibitors do not affect peroxisome morphology or integrity. Together, these data fail to provide any evidence for a role of the endoplasmic reticulum in peroxisome biogenesis.


2008 ◽  
Vol 19 (3) ◽  
pp. 885-898 ◽  
Author(s):  
Mingda Yan ◽  
Dorian A. Rachubinski ◽  
Saurabh Joshi ◽  
Richard A. Rachubinski ◽  
Suresh Subramani

Yarrowia lipolytica Pex23p and Saccharomyces cerevisiae Pex30p, Pex31p, and Pex32p comprise a family of dysferlin domain–containing peroxins. We show that the deletion of their Pichia pastoris homologues, PEX30 and PEX31, does not affect the function or division of methanol-induced peroxisomes but results in fewer and enlarged, functional, oleate-induced peroxisomes. Synthesis of Pex30p is constitutive, whereas that of Pex31p is oleate-induced but at a much lower level relative to Pex30p. Pex30p interacts with Pex31p and is required for its stability. At steady state, both Pex30p and Pex31p exhibit a dual localization to the endoplasmic reticulum (ER) and peroxisomes. However, Pex30p is localized mostly to the ER, whereas Pex31p is predominantly on peroxisomes. Consistent with ER-to-peroxisome trafficking of these proteins, Pex30p accumulates on peroxisomes upon overexpression of Pex31p. Additionally, Pex31p colocalizes with Pex30p at the ER in pex19Δ cells and can be chased from the ER to peroxisomes in a Pex19p-dependent manner. The dysferlin domains of Pex30p and Pex31p, which are dispensable for their interaction, stability, and subcellular localization, are essential for normal peroxisome number and size. The growth environment-specific role of these peroxins, their dual localization, and the function of their dysferlin domains provide novel insights into peroxisome morphogenesis.


2020 ◽  
Author(s):  
Jing Sun ◽  
wugui chen ◽  
Songtao Li ◽  
Sizhen Yang ◽  
Ying Zhang ◽  
...  

Abstract Background: Receptor activator of nuclear factor-κB ligand (RANKL) has been found to induce osteoclastogenesis and bone resorption. However, the underlying molecular mechanisms remain unclear. Methods: Osteoclastogenesis was evaluated by number of TRAP-positive multinuclear (≥3) osteoclasts, bone resorption pits and expression levels of related genes. Autophagy activity were evaluated by LC3-II/LC3-I ratio, number of autophagic vacuoles and adenovirus-mRFP-GFP-tagged LC3 reporting system; Inhibitor chloroquine (CQ) was used to verified the role of autophagy in RANKL-induced osteoclastogenesis; Via downregulating Nox4 with inhibitor (DPI) and retrovirus-conveyed shRNA, we further explored the importance of Nox4 in RANKL-induced autophagy and osteoclastogenesis, as well as the regulatory effects of Nox4 on nonmitochondrial reactive oxygen species (ROS) and PERK/eIF-2α/ATF4 pathway. Intracellular ROS scavenger (NAC), mitochondrial-targeted antioxidant (MitoTEMPO) and inhibitor of PERK (GSK2606414) were also employed to investigate the role of ROS and PERK/eIF-2α/ATF4 pathway in RANKL-induced autophagy and osteoclastogenesis. Results: RANKL markedly increased autophagy, while CQ treatment caused reduction of RANKL-induced autophagy and osteoclastogenesis. Consistent with the increased autophagy, the protein levels of Nox4 were significantly increased, and Nox4 was selectively localized within the endoplasmic reticulum (ER) after RANKL stimulation. DPI and shRNA efficiently decreased the protein level and (or) activity of Nox4 in the ER and inhibited RANKL-induced autophagy and osteoclastogenesis. Mechanistically, we found that Nox4 regulates RANKL-induced autophagy activation and osteoclastogenesis by stimulating the production of nonmitochondrial ROS. Additionally, Nox4-derived nonmitochondrial ROS dramatically activate PERK/eIF-2α/ATF4, which is a critical unfolded protein response (UPR)-related signaling pathway during ER stress. Blocking the activation of the PERK/eIF-2α/ATF4 signaling pathway either by Nox4 shRNA, ROS antioxidant or PERK inhibitor (GSK2606414) treatment significantly inhibited endoplasmic reticulum autophagy (ER-phagy) during RANKL-induced osteoclastogenesis. Conclusions: Our findings provide new insights into the processes of RANKL-induced osteoclastogenesis and will help the development of new therapeutic strategies for osteoclastogenesis-related diseases.


1992 ◽  
Vol 12 (10) ◽  
pp. 4601-4611
Author(s):  
C Tachibana ◽  
T H Stevens

The product of the EUG1 gene of Saccharomyces cerevisiae is a soluble endoplasmic reticulum protein with homology to both the mammalian protein disulfide isomerase (PDI) and the yeast PDI homolog encoded by the essential PDI1 gene. Deletion or overexpression of EUG1 causes no growth defects under a variety of conditions. EUG1 mRNA and protein levels are dramatically increased in response to the accumulation of native or unglycosylated proteins in the endoplasmic reticulum. Overexpression of the EUG1 gene allows yeast cells to grow in the absence of the PDI1 gene product. Depletion of the PDI1 protein in Saccharomyces cerevisiae causes a soluble vacuolar glycoprotein to accumulate in its endoplasmic reticulum form, and this phenotype is only partially relieved by the overexpression of EUG1. Taken together, our results indicate that PDI1 and EUG1 encode functionally related proteins that are likely to be involved in interacting with nascent polypeptides in the yeast endoplasmic reticulum.


1997 ◽  
Vol 17 (9) ◽  
pp. 5210-5226 ◽  
Author(s):  
V I Titorenko ◽  
D M Ogrydziak ◽  
R A Rachubinski

We have identified and characterized mutants of the yeast Yarrowia lipolytica that are deficient in protein secretion, in the ability to undergo dimorphic transition from the yeast to the mycelial form, and in peroxisome biogenesis. Mutations in the SEC238, SRP54, PEX1, PEX2, PEX6, and PEX9 genes affect protein secretion, prevent the exit of the precursor form of alkaline extracellular protease from the endoplasmic reticulum, and compromise peroxisome biogenesis. The mutants sec238A, srp54KO, pex2KO, pex6KO, and pex9KO are also deficient in the dimorphic transition from the yeast to the mycelial form and are affected in the export of only plasma membrane and cell wall-associated proteins specific for the mycelial form. Mutations in the SEC238, SRP54, PEX1, and PEX6 genes prevent or significantly delay the exit of two peroxisomal membrane proteins, Pex2p and Pex16p, from the endoplasmic reticulum en route to the peroxisomal membrane. Mutations in the PEX5, PEX16, and PEX17 genes, which have previously been shown to be essential for peroxisome biogenesis, affect the export of plasma membrane and cell wall-associated proteins specific for the mycelial form but do not impair exit from the endoplasmic reticulum of either Pex2p and Pex16p or of proteins destined for secretion. Biochemical analyses of these mutants provide evidence for the existence of four distinct secretory pathways that serve to deliver proteins for secretion, plasma membrane and cell wall synthesis during yeast and mycelial modes of growth, and peroxisome biogenesis. At least two of these secretory pathways, which are involved in the export of proteins to the external medium and in the delivery of proteins for assembly of the peroxisomal membrane, diverge at the level of the endoplasmic reticulum.


2006 ◽  
Vol 34 (3) ◽  
pp. 359-362 ◽  
Author(s):  
S. Raychaudhuri ◽  
W.A. Prinz

The proper distribution of sterols among organelles is critical for numerous cellular functions. How sterols are sorted and moved among membranes remains poorly understood, but they are transported not only in vesicles but also by non-vesicular pathways. One of these pathways moves exogenous sterols from the plasma membrane to the endoplasmic reticulum in the yeast Saccharomyces cerevisiae. We have found that two classes of proteins play critical roles in this transport, ABC transporters (ATP-binding-cassette transporters) and oxysterol-binding protein-related proteins. Transport is also regulated by phosphoinositides and the interactions of sterols with other lipids. Here, we summarize these findings and speculate on the role of non-vesicular sterol transfer in determining intracellular sterol distribution and membrane function.


2021 ◽  
Author(s):  
Huaying Cai ◽  
Linhui Ni ◽  
Xingyue Hu ◽  
Xianjun Ding

Abstract Background & objectiveStriatal plasticity alterations caused by endoplasmic reticulum (ER) stress is supposed to be critically involved in the mechanism of DYT1 dystonia. In the current study, we expanded this research field by investigating the critical role of ER stress underlying synaptic plasticity impairment imposed by mutant heterozygous Tor1a+/- in a DYT1 dystonia mouse model.Methods & resultsLong-term depression (LTD) was failed to be induced, while long-term potentiation (LTP) was further strengthened in striatal spiny neurons (SPNs) from the Tor1a+/- DYT1 dystonia mice. Spine morphology analyses revealed a significant increase of both number of mushroom type spines and spine width in Tor1a+/- SPNs. In addition, increased AMPA receptor function and the reduction of NMDA/AMPA ratio in the postsynaptic of Tor1a+/- SPNs was observed, along with increased ER stress protein levels in Tor1a+/- striatum. Notably, ER stress inhibitors, tauroursodeoxycholic acid (TUDCA), could rescue LTD as well as AMPA currents.ConclusionThe current study illustrated the role of ER stress in mediating structural and functional plasticity alterations in Tor1a+/- SPNs. Inhibition of the ER stress by TUDCA is beneficial in reversing the deficits at the cellular and molecular levels. Remedy of dystonia associated neurological and motor functional impairment by ER stress inhibitors could be a recommendable therapeutic agent in clinical practice.


2007 ◽  
Vol 177 (2) ◽  
pp. 289-303 ◽  
Author(s):  
Tong Guo ◽  
Christopher Gregg ◽  
Tatiana Boukh-Viner ◽  
Pavlo Kyryakov ◽  
Alexander Goldberg ◽  
...  

We define the dynamics of spatial and temporal reorganization of the team of proteins and lipids serving peroxisome division. The peroxisome becomes competent for division only after it acquires the complete set of matrix proteins involved in lipid metabolism. Overloading the peroxisome with matrix proteins promotes the relocation of acyl-CoA oxidase (Aox), an enzyme of fatty acid β-oxidation, from the matrix to the membrane. The binding of Aox to Pex16p, a membrane-associated peroxin required for peroxisome biogenesis, initiates the biosynthesis of phosphatidic acid and diacylglycerol (DAG) in the membrane. The formation of these two lipids and the subsequent transbilayer movement of DAG initiate the assembly of a complex between the peroxins Pex10p and Pex19p, the dynamin-like GTPase Vps1p, and several actin cytoskeletal proteins on the peroxisomal surface. This protein team promotes membrane fission, thereby executing the terminal step of peroxisome division.


Sign in / Sign up

Export Citation Format

Share Document