scholarly journals Sil1, a nucleotide exchange factor for BiP, is not required for antibody assembly or secretion

2015 ◽  
Vol 26 (3) ◽  
pp. 420-429 ◽  
Author(s):  
Viraj P. Ichhaporia ◽  
Tyler Sanford ◽  
Jenny Howes ◽  
Tony N. Marion ◽  
Linda M. Hendershot

Sil1 is a nucleotide exchange factor for the endoplasmic reticulum chaperone BiP, and mutations in this gene lead to Marinesco–Sjögren syndrome (MSS), a debilitating autosomal recessive disease characterized by multisystem defects. A mouse model for MSS was previously produced by disrupting Sil1 using gene-trap methodology. The resulting Sil1Gt mouse phenocopies several pathologies associated with MSS, although its ability to assemble and secrete antibodies, the best-characterized substrate of BiP, has not been investigated. In vivo antigen-specific immunizations and ex vivo LPS stimulation of splenic B cells revealed that the Sil1Gt mouse was indistinguishable from wild-type age-matched controls in terms of both the kinetics and magnitude of antigen-specific antibody responses. There was no significant accumulation of BiP-associated Ig assembly intermediates or evidence that another molecular chaperone system was used for antibody production in the LPS-stimulated splenic B cells from Sil1Gt mice. ER chaperones were expressed at the same level in Sil1WT and Sil1Gt mice, indicating that there was no evident compensation for the disruption of Sil1. Finally, these results were confirmed and extended in three human EBV-transformed lymphoblastoid cell lines from individuals with MSS, leading us to conclude that the BiP cofactor Sil1 is dispensable for antibody production.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 128-128
Author(s):  
Ilaria Iacobucci ◽  
Kathryn G. Roberts ◽  
Yongjin Li ◽  
Debbie Payne-Turner ◽  
Marcus Valentine ◽  
...  

Abstract Introduction: BCR-ABL1-like, or Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL), is characterized by a gene expression profile similar to BCR-ABL1-positive ALL, with a broad range of genetic alterations activating cytokine receptor and kinase signaling and poor outcome. We previously reported a rearrangement of EPOR, encoding the erythropoietin receptor, into the immunoglobulin heavy chain locus (IGH). The aims of this study were to define the frequency and genomic architecture of EPOR rearrangements in B-ALL and to examine their role in kinase signaling and lymphoid transformation. Methods: Whole genome and/or transcriptome sequencing was performed on 154 Ph-like ALL cases. Sanger sequencing and fluorescent in situ hybridization were used to confirm and map the EPOR rearrangements. Wild-type or EPOR rearranged alleles were expressed in interleukin-3 (IL-3)-dependent mouse hematopoietic Ba/F3 cells and interleukin-7 (IL-7)-dependent pre-B cells harboring alterations of Arf and/or the dominant negative IKZF1 allele IK6 observed in EPOR-rearranged ALL. Proliferation and signaling were examined in the absence or presence of erythropoietin (EPO). EPOR expression and signaling in cell lines and primary leukemic cells were examined by immunofluorescence, flow cytometry and immunoblotting. Epor-/- fetal liver cells were transduced with empty vector, EPOR wild-type or rearranged alleles and used for erythroid colony forming unit (CFU-E) and erythroid burst-forming unit (BFU-E) assays. Luciferase-marked xenografts of human EPOR-rearranged ALL were established in NOD-SCID-IL2R gamma (NSG) null mice, and signaling, EPO-dependent proliferation and sensitivity to the JAK inhibitor ruxolitinib were assessed ex vivo and in vivo. Results: Eight cases (5.2% of Ph-like ALL) harbored rearrangements of EPOR into either the IGH or immunoglobulin kappa light chain (IGK) loci with two consequences: i) inversion and insertion of EPOR 5’ untranscribed region into the the promoter and enhancer region of IGH/IGK; ii) truncation of the last coding exon of EPOR. Such rearrangements resulted in overexpression of a C-terminal truncated receptor that retained the phosphorylation site required for STAT5 activation, but lacked multiple intracytoplasmic tyrosine residues whose phosphorylation is required for normal negative regulation of the receptor. Notably, the locations of the truncation sites overlap with those arising from inherited mutations in primary familial congenital polycythemia, in which frameshift and nonsense mutations truncate the receptor. A real-time quantitative PCR assay was established to provide a diagnostic tool and to confirm that primary leukemia cells with these EPOR rearrangements overexpress N-terminal exons but lack expression of C-terminal truncated exon eight. The truncated alleles were expressed at higher levels than wild-type EPOR in IL-3-dependent Ba/F3 and IL-7-dependent Arf-/- mouse pre-B cells, and sustained cell proliferation and increased STAT5 phosphorylation following stimulation with exogenous EPO. Expression of wild-type or truncated EPOR in Epor-/- fetal liver cells promoted erythroid differentiation with formation of CFU-E and BFU-E colonies, indicating that truncated receptors sustain erythroid development. Xenografted EPOR-rearranged leukemic cells exhibited high levels of mutant EPOR on the cell surface, constitutive STAT5 phosphorylation and sensitivity to the JAK2 inhibitor ruxolitinib ex vivo and in vivo. Conclusions: We have identified a subset of Ph-like ALL cases characterized by rearrangements of truncated EPOR into the IGH/IGK chain loci. This represents an entirely new mechanism of EPOR deregulation and unexpectedly implicates EPOR signaling as an important factor influencing B-lymphoid malignancies that are amenable to JAK-STAT5 inhibition. Clinical trials testing ruxolitinib in ALL patients with EPOR rearrangements are warranted. Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 20 (17) ◽  
pp. 3905-3917 ◽  
Author(s):  
Diana L. Ford-Speelman ◽  
Joseph A. Roche ◽  
Amber L. Bowman ◽  
Robert J. Bloch

Obscurin is a large (∼800-kDa), modular protein of striated muscle that concentrates around the M-bands and Z-disks of each sarcomere, where it is well positioned to sense contractile activity. Obscurin contains several signaling domains, including a rho-guanine nucleotide exchange factor (rhoGEF) domain and tandem pleckstrin homology domain, consistent with a role in rho signaling in muscle. We investigated the ability of obscurin's rhoGEF domain to interact with and activate small GTPases. Using a combination of in vitro and in vivo approaches, we found that the rhoGEF domain of obscurin binds selectively to rhoA, and that rhoA colocalizes with obscurin at the M-band in skeletal muscle. Other small GTPases, including rac1 and cdc42, neither associate with the rhoGEF domain of obscurin nor concentrate at the level of the M-bands. Furthermore, overexpression of the rhoGEF domain of obscurin in adult skeletal muscle selectively increases rhoA expression and activity in this tissue. Overexpression of obscurin's rhoGEF domain and its effects on rhoA alter the expression of rho kinase and citron kinase, both of which can be activated by rhoA in other tissues. Injuries to rodent hindlimb muscles caused by large-strain lengthening contractions increases rhoA activity and displaces it from the M-bands to Z-disks, similar to the effects of overexpression of obscurin's rhoGEF domain. Our results suggest that obscurin's rhoGEF domain signals at least in part by inducing rhoA expression and activation, and altering the expression of downstream kinases in vitro and in vivo.


Blood ◽  
2011 ◽  
Vol 117 (3) ◽  
pp. 1005-1013 ◽  
Author(s):  
Moritz Stolla ◽  
Lucia Stefanini ◽  
R. Claire Roden ◽  
Massiel Chavez ◽  
Jessica Hirsch ◽  
...  

Abstract Two major pathways contribute to Ras-proximate-1–mediated integrin activation in stimulated platelets. Calcium and diacyglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI, RasGRP2) mediates the rapid but reversible activation of integrin αIIbβ3, while the adenosine diphosphate receptor P2Y12, the target for antiplatelet drugs like clopidogrel, facilitates delayed but sustained integrin activation. To establish CalDAG-GEFI as a target for antiplatelet therapy, we compared how each pathway contributes to thrombosis and hemostasis in mice. Ex vivo, thrombus formation at arterial or venous shear rates was markedly reduced in CalDAG-GEFI−/− blood, even in the presence of exogenous adenosine diphosphate and thromboxane A2. In vivo, thrombosis was virtually abolished in arterioles and arteries of CalDAG-GEFI−/− mice, while small, hemostatically active thrombi formed in venules. Specific deletion of the C1-like domain of CalDAG-GEFI in circulating platelets also led to protection from thrombus formation at arterial flow conditions, while it only marginally increased blood loss in mice. In comparison, thrombi in the micro- and macrovasculature of clopidogrel-treated wild-type mice grew rapidly and frequently embolized but were hemostatically inactive. Together, these data suggest that inhibition of the catalytic or the C1 regulatory domain in CalDAG-GEFI will provide strong protection from athero-thrombotic complications while maintaining a better safety profile than P2Y12 inhibitors like clopidogrel.


2020 ◽  
Author(s):  
Levi J. McClelland ◽  
Kaiming Zhang ◽  
Tung-Chung Mou ◽  
Jake Johnston ◽  
Cindee Yates-Hansen ◽  
...  

Ric-8A is a cytosolic Guanine Nucleotide exchange Factor (GEF) that activates heterotrimeric G protein alpha subunits (Gα)1. Ric-8A is essential to life in multicellular eukaryotes by virtue of its chaperone activity that is required for Gα biogenesis and membrane localization2, 3. Ric-8A adopts an armadillo (ARM)/HEAT repeat domain architecture and is structurally unrelated to G Protein-Coupled Receptors (GPCR)4. Both GEF and chaperone activities are stimulated by Casein Kinase II phosphorylation5. The mechanisms by which Ric-8A catalyzes GDP release and GTP binding to Gα, or exerts chaperone activity are unknown. Here, we report the structure of the nanobody-stabilized complex of nucleotide-free Gαi1 (isoform 1 of Gα family i) and phosphorylated Ric-8A at near atomic resolution by cryo-electron microscopy and X-ray crystallography. We find that Ric-8A envelops the GTPase domain of Gα, disrupting all three switch regions that convey Gα nucleotide-binding and signaling activity, and displaces the C-terminal helix and helical domain of Gα. These cooperative interactions dismantle the GDP binding site and promote GDP release, while protecting structural elements of Gα that are dynamic in the nucleotide-free state. The structures also show how in vivo phosphorylation stabilizes Gα-binding elements of Ric-8A, thereby enhancing its GEF and chaperone activities.


1994 ◽  
Vol 107 (12) ◽  
pp. 3635-3642 ◽  
Author(s):  
D.A. Hughes ◽  
N. Yabana ◽  
M. Yamamoto

The ste6 gene of Schizosaccharomyces pombe encodes a putative GDP-GTP exchange factor for the ras1 gene product. Genetic analysis of the ste6 and ras1 genes has shown that they are required for mating and for the response to mating pheromones. In this study we show that expression of the ste6-encoded mRNA is induced by nitrogen starvation, the physiological signal that triggers mating and sexual differentiation. Exposure to mating pheromones enhances the induction of ste6 expression upon nitrogen starvation. Pheromone-induced expression requires not only the function of components of the pheromone-signalling pathway, but also ras1 function. Furthermore, mutants in which the Ras1 protein is activated have higher basal and induced levels of ste6 gene expression than wild-type cells. These observations indicate the existence of a positive-feedback loop through which Ras1 stimulates the expression of its own activator. Since Ste6 is likely to promote the exchange of guanine nucleotides on Ras1 protein, our results suggest an important role for GDP-GTP exchange in the regulation of Ras1 activity during the mating process in S. pombe.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tatiana Omelchenko ◽  
Alan Hall ◽  
Kathryn V. Anderson

AbstractCoordinated directional migration of cells in the mesoderm layer of the early embryo is essential for organization of the body plan. Here we show that mesoderm organization in mouse embryos depends on β-Pix (Arhgef7), a guanine nucleotide exchange factor for Rac1 and Cdc42. As early as E7.5, β-Pix mutants have an abnormally thick mesoderm layer; later, paraxial mesoderm fails to organize into somites. To define the mechanism of action of β-Pix in vivo, we optimize single-cell live-embryo imaging, cell tracking, and volumetric analysis of individual and groups of mesoderm cells. Use of these methods shows that wild-type cells move in the same direction as their neighbors, whereas adjacent β-Pix mutant cells move in random directions. Wild-type mesoderm cells have long polarized filopodia-like protrusions, which are absent in β-Pix mutants. The data indicate that β-Pix-dependent cellular protrusions drive and coordinate collective migration of the mesoderm in vivo.


1995 ◽  
Vol 130 (5) ◽  
pp. 1051-1061 ◽  
Author(s):  
S Jones ◽  
R J Litt ◽  
C J Richardson ◽  
N Segev

Small GTPases of the rab family are involved in the regulation of vesicular transport. It is believed that cycling between the GTP- and GDP-bound forms, and accessory factors regulating this cycling are crucial for rab function. However, an essential role for rab nucleotide exchange factors has not yet been demonstrated. In this report we show the requirement of nucleotide exchange factor activity for Ypt1 GTPase mediated protein transport. The Ypt1 protein, a member of the rab family, plays a role in targeting vesicles to the acceptor compartment and is essential for the first two steps of the yeast secretory pathway. We use two YPT1 dominant mutations that contain alterations in a highly conserved GTP-binding domain, N121I and D124N. YPT1-D124N is a novel mutation that encodes a protein with nucleotide specificity modified from guanine to xanthine. This provides a tool for the study of an individual rab GTPase in crude extracts: a xanthosine triphosphate (XTP)-dependent conditional dominant mutation. Both mutations confer growth inhibition and a block in protein secretion when expressed in vivo. The purified mutant proteins do not bind either GDP or GTP. Moreover, they completely inhibit the ability of the exchange factor to stimulate nucleotide exchange for wild type Ypt1 protein, and are potent inhibitors of ER to Golgi transport in vitro at the vesicle targeting step. The inhibitory effects of the Ypt1-D124N mutant protein on both nucleotide exchange activity and protein transport in vitro can be relieved by XTP, indicating that it is the nucleotide-free form of the mutant protein that is inhibitory. These results suggest that the dominant mutant proteins inhibit protein transport by sequestering the exchange factor from the wild type Ypt1 protein, and that this factor has an essential role in vesicular transport.


Diabetologia ◽  
2014 ◽  
Vol 57 (7) ◽  
pp. 1410-1419 ◽  
Author(s):  
Arne A. Ittner ◽  
Josefine Bertz ◽  
Tse Yan Becky Chan ◽  
Janet van Eersel ◽  
Patsie Polly ◽  
...  

2017 ◽  
Vol 107 (4) ◽  
pp. 433-443 ◽  
Author(s):  
Qiongnan Gu ◽  
Meijuan Chen ◽  
Junbin Huang ◽  
Yangdou Wei ◽  
Tom Hsiang ◽  
...  

The infection process of Colletotrichum higginsianum, which causes a disease of crucifers, involves several key steps: conidial germination, appressorial formation, appressorial penetration, and invasive growth in host tissues. In this study, the ChRgf gene encoding a Ras guanine-nucleotide exchange factor protein was identified by screening T-DNA insertion mutants generated from Agrobacterium tumefaciens-mediated transformation that were unable to cause disease on the host Arabidopsis thaliana. Targeted gene deletion of ChRgf resulted in a null mutant (ΔChrgf-42) with defects in vegetative growth, hyphal morphology, and conidiation, and poor surface attachment and low germination on hydrophobic surfaces; however, there were no apparent differences in appressorial turgor pressure between the wild type and the mutant. The conidia of the mutant were unable to geminate on attached Arabidopsis leaves and did not cause any disease symptoms. Intracellular cyclic adenosine monophosphate levels in the ΔChrgf mutant were lower than that of the wild type. Our results suggest that ChRgf is a key regulator in response to salt and osmotic stresses in C. higginsianum, and indicate that it is involved in fungal pathogenicity. This gene seems to act as an important modulator upstream of several distinct signaling pathways that are involved in regulating vegetative growth, conidiation, infection-related structure development, and stress responses of C. higginsianum.


Sign in / Sign up

Export Citation Format

Share Document