scholarly journals Proteomic analysis of desmosomes reveals novel components required for epidermal integrity

2020 ◽  
Vol 31 (11) ◽  
pp. 1140-1153
Author(s):  
Kwabena A. Badu-Nkansah ◽  
Terry Lechler

Desmosomes are cell-cell adhesion structures that are required for the integrity of the skin and heart. Here, we have used a proteomics approach to identify novel desmosome-associated proteins. Ablation of Crk and Crkl, two such proteins identified, results in desmosome defects, epidermal fragility and neonatal lethality.

1998 ◽  
Vol 111 (8) ◽  
pp. 1071-1080 ◽  
Author(s):  
S.M. Reuver ◽  
C.C. Garner

Members of the SAP family of synapse-associated proteins have recently emerged as central players in the molecular organization of synapses. In this study, we have examined the mechanism that localizes one member, SAP97, to sites of cell-cell contact. Utilizing epithelial CACO-2 cells and fibroblast L-cells as model systems, we demonstrate that SAP97 is associated with the submembranous cortical cytoskeleton at cell-cell adhesion sites. Furthermore, we show that its localization into this structure is triggered by E-cadherin. Although SAP97 can be found in an E-cadherin/catenin adhesion complex, this interaction seems to be mediated by the attachment of SAP97 to the cortical cytoskeleton. Our results are consistent with a model in which SAP97 is recruited to sites of cell-cell contact via an E-cadherin induced assembly of the cortical cytoskeleton.


1995 ◽  
Vol 269 (6) ◽  
pp. C1433-C1449 ◽  
Author(s):  
P. A. Piepenhagen ◽  
W. J. Nelson

Structural and functional differences among epithelial cells of kidney nephrons may be regulated by variations in cell-to-cell (cell-cell) and cell-to-substratum (cell-substratum) junctions. Using immunofluorescence microscopy, we demonstrate that the cadherin-associated proteins alpha- and beta-catenin are localized to basolateral membranes of cells in all nephron segments, whereas plakoglobin, a protein associated with both classical and desmosomal cadherins, is localized to noninterdigitated lateral membranes in the distal half of the nephron where it colocalizes with desmoplakin and cytokeratin K8. Plakoglobin is also present in capillary endothelial cells where staining for the other catenins and desmosomal proteins is not observed. Immunofluorescence for laminin A and alpha 6-integrin, proteins that mediate cell-substratum contacts, reveal no correlations with the other staining patterns observed. These data indicate that plakoglobin and beta-catenin subserve distinct functions in cell-cell adhesion and suggest that E-cadherin-mediated contacts generate a basal level of cell-cell adhesion, whereas desmosomal junctions provide additional strength to cell-cell contacts in the distal nephron.


2000 ◽  
Vol 150 (5) ◽  
pp. 1161-1176 ◽  
Author(s):  
Kouichi Tachibana ◽  
Hiroyuki Nakanishi ◽  
Kenji Mandai ◽  
Kumi Ozaki ◽  
Wataru Ikeda ◽  
...  

We have found a new cell–cell adhesion system at cadherin-based cell–cell adherens junctions (AJs) consisting of at least nectin and l-afadin. Nectin is a Ca2+-independent homophilic immunoglobulin-like adhesion molecule, and l-afadin is an actin filament-binding protein that connects the cytoplasmic region of nectin to the actin cytoskeleton. Both the trans-interaction of nectin and the interaction of nectin with l-afadin are necessary for their colocalization with E-cadherin and catenins at AJs. Here, we examined the mechanism of interaction between these two cell–cell adhesion systems at AJs by the use of α-catenin–deficient F9 cell lines and cadherin-deficient L cell lines stably expressing their various components. We showed here that nectin and E-cadherin were colocalized through l-afadin and the COOH-terminal half of α-catenin at AJs. Nectin trans-interacted independently of E-cadherin, and the complex of E-cadherin and α- and β-catenins was recruited to nectin-based cell–cell adhesion sites through l-afadin without the trans-interaction of E-cadherin. Our results indicate that nectin and cadherin interact through their cytoplasmic domain–associated proteins and suggest that these two cell–cell adhesion systems cooperatively organize cell–cell AJs.


1992 ◽  
Vol 118 (3) ◽  
pp. 703-714 ◽  
Author(s):  
N Matsuyoshi ◽  
M Hamaguchi ◽  
S Taniguchi ◽  
A Nagafuchi ◽  
S Tsukita ◽  
...  

Rat 3Y1 cells acquire metastatic potential when transformed with v-src, and this potential is enhanced by double transformation with v-src and v-fos (Taniguchi, S., T. Kawano, T. Mitsudomi, G. Kimura, and T. Baba. 1986. Jpn. J. Cancer Res. 77:1193-1197). We compared the activity of cadherin cell adhesion molecules of normal 3Y1 cells with that of v-src transformed (SR3Y1) and v-src and v-fos double transformed (fosSR3Y1) 3Y1 cells. These cells expressed similar amounts of P-cadherin, and showed similar rates of cadherin-mediated aggregation under suspended conditions. However, the aggregates or colonies of these cells were morphologically distinct. Normal 3Y1 cells formed compacted aggregates in which cells are firmly connected with each other, whereas the transformed cells were more loosely associated, and could freely migrate out of the colonies. Overexpression of exogenous E-cadherin in these transformed cells had no significant effect on their adhesive properties. We then found that herbimycin A, a tyrosine kinase inhibitor, induced tighter cell-cell associations in the aggregates of the transformed cells. In contrast, vanadate, a tyrosine phosphatase inhibitor, inhibited the cadherin-mediated aggregation of SR3Y1 and fosSR3Y1 cells but had little effect on that of normal 3Y1 cells. These results suggest that v-src-mediated tyrosine phosphorylation perturbs cadherin function directly or indirectly, and the inhibition of tyrosine phosphorylation restores cadherin action to the normal state. We next studied tyrosine phosphorylation on cadherins and the cadherin-associated proteins, catenins. While similar amounts of catenins were expressed in all of these cells, the 98-kD catenin was strongly tyrosine phosphorylated only in SR3Y1 and fosSR3Y1 cells. Cadherins were also weakly tyrosine phosphorylated only in the transformed cells. The tyrosine phosphorylation of these proteins was enhanced by vanadate, and inhibited by herbimycin A. Thus, the tyrosine phosphorylation of the cadherin-catenin system itself might affect its function, causing instable cell-cell adhesion.


2019 ◽  
Vol 19 (1) ◽  
pp. 50-64 ◽  
Author(s):  
Antoine Méant ◽  
Beichen Gao ◽  
Geneviève Lavoie ◽  
Sami Nourreddine ◽  
Flora Jung ◽  
...  

2005 ◽  
Vol 173 (4S) ◽  
pp. 170-170
Author(s):  
Maxine G. Tran ◽  
Miguel A. Esteban ◽  
Peter D. Hill ◽  
Ashish Chandra ◽  
Tim S. O'Brien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document