miR-4530 inhibits the malignant biological behaviors of human glioma cells by directly targeting RTEL1

2020 ◽  
Vol 52 (12) ◽  
pp. 1394-1403
Author(s):  
Tuo Wang ◽  
Yan Zhang ◽  
Bo Cui ◽  
Maode Wang ◽  
Ya Li ◽  
...  

Abstract Human glioma is the most common primary brain tumor and is associated with high morbidity and mortality. Aberrant expressions of microRNAs (miRNAs) are involved in glioma progression. In the present study, we aimed to elucidate the roles of miR-4530 in the pathogenesis of gliomas. miR-4530 expression was examined in human glioma clinical tissues and cell lines including U251 and T98G. The target gene of miR-4530, RTEL1, was predicted with online tools and validated by luciferase reporter assay. Lentivirus infection, transfection of plasmids, and miRNA mimics were used to manipulate gene expression. Cell proliferation was determined using the CCK-8 method, and migration and invasion assays were determined with transwell experiments. Colony formation was measured by crystal violet staining, while apoptosis was determined by Annexin V/PI staining. The anti-tumor effects of miR-4530 were evaluated in nude mice xenografted using U251 cells. Our results showed that miR-4530 was significantly down-regulated in human glioma tissues and cell lines. miR-4530 over-expression inhibited the malignant behaviors of U251 and T98G cells, including reduced proliferation, diminished colony formation, migration and invasion, and increased apoptosis. Further mechanistic investigations revealed that RTEL1 is a direct functional target of miR-4530 in gliomas, and its over-expression remarkably reverses the effects of miR-4530 mimics on inhibiting these malignant behaviors. In addition, miR-4530 over-expression inhibited the growth of xenografted U251 glioma in nude mice. Therefore, miR-4530 acts as a tumor-suppressor gene and inhibits the malignant biological behaviors of human glioma cells, which is associated with directly targeting RTEL1. The miR-4530/RTEL1 axis is a potential therapeutic target for gliomas.

1995 ◽  
Vol 82 (6) ◽  
pp. 1035-1043 ◽  
Author(s):  
Jörg-Christian Tonn ◽  
Hans Kristian Haugland ◽  
Jaakko Saraste ◽  
Klaus Roosen ◽  
Ole Didrik Laerum

✓ The aim of this study was to investigate the antimigratory and antiinvasive potential of vincristine sulfate (VCR) on human glioma cells and to analyze whether phenytoin (5,5-diphenylhydantoin; DPH) might act synergistically with VCR. Vincristine affects the cytoplasmic microtubules; DPH has been reported to enhance VCR cytotoxicity in murine cells. In two human glioma cell lines, GaMG and D-37MG, we found VCR to reduce monolayer growth and colony formation in a dose-dependent fashion at concentrations of 10 ng/ml and above. Phenytoin increased the cytotoxic and cystostatic effects of VCR in monolayer cells but not in spheroids. Multicellular spheroids were used to investigate directional migration. A coculture system of GaMG and D-37MG spheroids with fetal rat brain aggregates was used to analyze and quantify tumor cell invasion. A dose-dependent inhibition of migration and invasion by VCR was observed in both cell lines without further enhancement by DPH. Immunofluorescence microscopy with antibodies against α-tubulin revealed dose-dependent morphological alterations in the microtubules when the cells were exposed to VCR but not after incubation with DPH. Based on the combination of standardized in vitro model systems currently in use and the present data, the authors strongly suggest that VCR inhibits migration and invasion of human glioma cells. This is not altered by DPH, which inhibits cell proliferation in combination with VCR.


2021 ◽  
Vol 9 (4) ◽  
pp. 229-244
Author(s):  
Simiao Zhang ◽  
Sandian Zhang ◽  
Hongzhen Wang ◽  
Xuege Huang ◽  
Jinzhi Wang ◽  
...  

Glioma is the most common primary malignant tumor of the adult central nervous system. It has high morbidity and poor survival. Myelin protein zero-like protein 1 (MPZL1) is a cell surface glycoprotein that activates numerous adhesion-dependent signaling pathways. MPZL1 plays important roles in human cancers that include metastatic process; however, it is not clear if MPZL1 plays a role in human glioma. Therefore, this study aimed to determine if silencing MPZL1 impacted the cell proliferative features of human glioma cells. First, MPZL1 expression was investigated in human glioma samples and tumor cell lines. Then the effects of small interfering RNA (siRNA)-targeting MPZL1 were analyzed on proliferation, colony formation, cell cycle progression, and invasion of human glioma cells. The results from this study demonstrated that MPZL1 was highly expressed in human glioma tissues and glioma cell lines. In addition, knockdown of MPZL1 significantly inhibited cell proliferation, colony formation, and invasiveness of glioma cells, and effectively induced cell cycle arrest at the G1 phase. Western blotting analysis indicated that silencing MPZL1 expression downregulated the expression of matrix metalloproteinase-2 (MMP-2), WNT1, caspase-3, cyclin A1, epidermal growth factor receptor (EGFR), and signal transducer and activator of transcription 3 (STAT3), and upregulated p53. The results from this study suggest that MPZL1 might be a marker for tumors and could be a potential therapeutic target for human glioma.


2019 ◽  
Vol 39 (9) ◽  
Author(s):  
YiHan Wu ◽  
Yuan Yao ◽  
YongLi Yun ◽  
MeiLing Wang ◽  
RunXiu Zhu

Abstract Increasing evidence indicates that microRNAs (miRNAs) participate in the regulation of chemoresistance in a variety of cancers including glioma. However, the molecular mechanism underlying the development of chemoresistance in glioma is not well understood. The aim of the present study was to explore the role of miRNAs in the chemosensitivity of glioma cells and the underlying mechanism. By microarray and qRT-PCR, we observed significant down-regulation of microRNA-302c (miR-302c) in the temozolomide (TMZ)-resistant human glioma tissues/cells. The low expression of miR-302c was closely associated with poor prognosis and chemotherapy resistant in patients. miR-302c up-regulation re-sensitized U251MG-TMZ cells and LN229-TMZ cells to TMZ treatment, as evidenced by inhibition of the cell viability, cell migration, and invasion capacity, and promotion of the apoptosis after TMZ treatment. Furthermore, P-glycoprotein (P-gp) was identified as a functional target of miR-302c and this was validated using a luciferase reporter assay. In addition, P-gp was found to be highly expressed in U251MG-TMZ cells and there was an inverse correlation between P-gp and miR-302c expression levels in clinical glioma specimens. Most importantly, we further confirmed that overexpression of P-gp reversed the enhanced TMZ-sensitivity induced by miR-302c overexpression in U251MG-TMZ and LN229-TMZ cells. Our finding showed that up-regulation of miR-302c enhanced TMZ-sensitivity by targeting P-gp in TMZ-resistant human glioma cells, which suggests that miR-302c would be potential therapeutic targets for chemotherapy-resistant glioma patients.


Author(s):  
He Zhu ◽  
Hongwei Zhang ◽  
Youliang Pei ◽  
Zhibin Liao ◽  
Furong Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a common type of malignant human cancer with high morbidity and poor prognosis, causing numerous deaths per year worldwide. Growing evidence has been demonstrated that long non-coding RNAs (lncRNAs) are closely associated with hepatocarcinogenesis and metastasis. However, the roles, functions, and working mechanisms of most lncRNAs in HCC remain poorly defined. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of CCDC183-AS1 in HCC tissues and cell lines. Cell proliferation, migration and invasion ability were evaluated by CCK-8 and transwell assay, respectively. Animal experiments were used to explore the role of CCDC183-AS1 and miR-589-5p in vivo. Bioinformatic analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the regulatory relationship between CCDC183-AS1, miR-589-5p and SKP1. Results Significantly upregulated expression of CCDC183-AS1 was observed in both HCC tissues and cell lines. HCC patients with higher expression of CCDC183-AS1 had a poorer overall survival rate. Functionally, overexpression of CCDC183-AS1 markedly promoted HCC cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas the downregulation of CCDC183-AS1 exerted opposite effects. MiR-589-5p inhibitor counteracted the proliferation, migration and invasion inhibitory effects induced by CCDC183-AS1 silencing. Mechanistically, CCDC183-AS1 acted as a ceRNA through sponging miR-589-5p to offset its inhibitory effect on the target gene SKP1, then promoted the tumorigenesis of HCC. Conclusions CCDC183-AS1 functions as an oncogene to promote HCC progression through the CCDC183-AS1/miR-589-5p/SKP1 axis. Our study provided a novel potential therapeutic target for HCC patients.


2014 ◽  
Vol 38 (12) ◽  
pp. 1415-1422 ◽  
Author(s):  
K. Fathima Hurmath ◽  
Palaniswamy Ramaswamy ◽  
Dalavaikodihalli Nanjaiah Nandakumar

2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Anqiang Yang ◽  
Handong Wang ◽  
Xiaobing Yang

Human glioma is one of the malignant tumors of the central nervous system (CNS). Its prognosis is poor, which is due to its genetic heterogeneity and our poor understanding of its underlying molecular mechanisms. The present study aimed to assess the relationship between plasmacytoma variant translocation 1 (PVT1) and enhancer of zeste homolog 2 (EZH2), and their effects on the proliferation and invasion of glioma cells. The expression levels of PVT1 and EZH2 in human glioma tissues and cell lines were measured using quantitative RT-PCR (qRT-PCR). Then, after siRNA-PVT1 and entire PVT1 sequence vector transfection, we determined the regulation roles of PVT1 in the proliferation, apoptosis, migration, and invasion of glioma cells. We found that the expression levels of both PVT1 and EZH2 were up-regulated in human glioma tissues and cell lines, and positively correlated with glioma malignancy. And, silencing of PVT1 expression resulted in decreased proliferation, increased apoptosis, and decreased migration and invasion. In addition, exogenous PVT1 led to increased EZH2 expression and increased proliferation and induced proliferation and invasion. These data inferred that long non-coding RNA PVT1 could be served as an indicator of glioma prognosis, and PVT1–EZH2 regulatory pathway may be a novel therapeutic target for treating glioma.


2004 ◽  
Vol 64 (9) ◽  
pp. 3179-3185 ◽  
Author(s):  
Mitsutoshi Nakada ◽  
Jared A. Niska ◽  
Hisashi Miyamori ◽  
Wendy S. McDonough ◽  
Jie Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document