Evolutionary dynamics in response to climate change

Author(s):  
Phillip Gienapp ◽  
Jon E. Brommer
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Åkesson ◽  
Alva Curtsdotter ◽  
Anna Eklöf ◽  
Bo Ebenman ◽  
Jon Norberg ◽  
...  

AbstractEco-evolutionary dynamics are essential in shaping the biological response of communities to ongoing climate change. Here we develop a spatially explicit eco-evolutionary framework which features more detailed species interactions, integrating evolution and dispersal. We include species interactions within and between trophic levels, and additionally, we incorporate the feature that species’ interspecific competition might change due to increasing temperatures and affect the impact of climate change on ecological communities. Our modeling framework captures previously reported ecological responses to climate change, and also reveals two key results. First, interactions between trophic levels as well as temperature-dependent competition within a trophic level mitigate the negative impact of climate change on biodiversity, emphasizing the importance of understanding biotic interactions in shaping climate change impact. Second, our trait-based perspective reveals a strong positive relationship between the within-community variation in preferred temperatures and the capacity to respond to climate change. Temperature-dependent competition consistently results both in higher trait variation and more responsive communities to altered climatic conditions. Our study demonstrates the importance of species interactions in an eco-evolutionary setting, further expanding our knowledge of the interplay between ecological and evolutionary processes.


2015 ◽  
Vol 282 (1805) ◽  
pp. 20141351 ◽  
Author(s):  
Jarad P. Mellard ◽  
Claire de Mazancourt ◽  
Michel Loreau

According to recent reviews, the question of how trophic interactions may affect evolutionary responses to climate change remains unanswered. In this modelling study, we explore the evolutionary dynamics of thermal and plant–herbivore interaction traits in a warming environment. We find the herbivore usually reduces adaptation speed and persistence time of the plant by reducing biomass. However, if the plant interaction trait and thermal trait are correlated, herbivores can create different coevolutionary attractors. One attractor has a warmer plant thermal optimum, and the other a colder one compared with the environment. A warmer plant thermal strategy is given a head start under warming, the only case where herbivores can increase plant persistence under warming. Persistence time of the plant under warming is maximal at small or large thermal niche width. This study shows that considering trophic interactions is necessary and feasible for understanding how ecosystems respond to climate change.


2020 ◽  
Vol 117 (51) ◽  
pp. 32509-32518
Author(s):  
Andrew J. Helmstetter ◽  
Kevin Béthune ◽  
Narcisse G. Kamdem ◽  
Bonaventure Sonké ◽  
Thomas L. P. Couvreur

Understanding the evolutionary dynamics of genetic diversity is fundamental for species conservation in the face of climate change, particularly in hyper-diverse biomes. Species in a region may respond similarly to climate change, leading to comparable evolutionary dynamics, or individualistically, resulting in dissimilar patterns. The second-largest expanse of continuous tropical rain forest (TRF) in the world is found in Central Africa. Here, present-day patterns of genetic structure are thought to be dictated by repeated expansion and contraction of TRFs into and out of refugia during Pleistocene climatic fluctuations. This refugia model implies a common response to past climate change. However, given the unrivalled diversity of TRFs, species could respond differently because of distinct environmental requirements or ecological characteristics. To test this, we generated genome-wide sequence data for >700 individuals of seven codistributed plants from Lower Guinea in Central Africa. We inferred species’ evolutionary and demographic histories within a comparative phylogeographic framework. Levels of genetic structure varied among species and emerged primarily during the Pleistocene, but divergence events were rarely concordant. Demographic trends ranged from repeated contraction and expansion to continuous growth. Furthermore, patterns in genetic variation were linked to disparate environmental factors, including climate, soil, and habitat stability. Using a strict refugia model to explain past TRF dynamics is too simplistic. Instead, individualistic evolutionary responses to Pleistocene climatic fluctuations have shaped patterns in genetic diversity. Predicting the future dynamics of TRFs under climate change will be challenging, and more emphasis is needed on species ecology to better conserve TRFs worldwide.


Author(s):  
Mark A. McPeek

This book investigates how local and regional patterns of community structure develop across space and through time by focusing on the theoretical interrelationships among community ecology, evolutionary adaptation, dispersal, and speciation and extinction. It discusses the purely ecological dynamics of interacting species in different community modules, how species in simple community modules evolve to adapt to one another, and how speciation and biogeographic mixing of taxa influence local community structure. It also examines community mixing due to climate change and how regional community structure is shaped by the ecological and evolutionary dynamics of species across a metacommunity. This introduction provides an overview of the evolutionary trajectories of various species in the context of ecological opportunity and community ecology, aggregated taxa in the trophic web, types of species found in a community, sources of biodiversity in a community, and the dynamics of natural selection, coevolution, and community structure.


2021 ◽  
Author(s):  
Jorad de Vries

The “holy grail” of trait-based ecology is to predict the fitness of a species in a particular environment based on its functional traits, which has become all the more relevant in the light of global change. However, current ecological models are ill-equipped to predict ecological responses to novel conditions due to their reliance on statistical methods and current observations rather than the mechanisms underlying how functional traits interact with the environment to determine plant fitness. Here, I will advocate the use of functional-structural plant (FSP) modelling in combination with evolutionary modelling to explore climate change responses in natural plant communities. Gaining a mechanistic understanding of how trait-environment interactions drive natural selection in novel environments requires consideration of individual plants with multidimensional phenotypes in dynamic environments that include abiotic gradients and biotic interactions, and their effect on the different vital rates that determine plant fitness. Evolutionary FSP modelling explicitly represents the trait-environment interactions that drive eco-evolutionary dynamics from individual to population scales and allows for efficient navigation of the large, complex and dynamic fitness landscapes that emerge from considering multidimensional plants in multidimensional environments. Using evolutionary FSP modelling as a tool to study climate change responses of plant communities can further our understanding of the mechanistic basis of these responses, and in particular, the role of local adaptation, phenotypic plasticity, and gene flow.


2019 ◽  
Vol 286 (1914) ◽  
pp. 20192227 ◽  
Author(s):  
Elvire Bestion ◽  
Andrea Soriano-Redondo ◽  
Julien Cucherousset ◽  
Staffan Jacob ◽  
Joël White ◽  
...  

Species interactions are central in predicting the impairment of biodiversity with climate change. Trophic interactions may be altered through climate-dependent changes in either predator food preferences or prey communities. Yet, climate change impacts on predator diet remain surprisingly poorly understood. We experimentally studied the consequences of 2°C warmer climatic conditions on the trophic niche of a generalist lizard predator. We used a system of semi-natural mesocosms housing a variety of invertebrate species and in which climatic conditions were manipulated. Lizards in warmer climatic conditions ate at a greater predatory to phytophagous invertebrate ratio and had smaller individual dietary breadths. These shifts mainly arose from direct impacts of climate on lizard diets rather than from changes in prey communities. Dietary changes were associated with negative changes in fitness-related traits (body condition, gut microbiota) and survival. We demonstrate that climate change alters trophic interactions through top-predator dietary shifts, which might disrupt eco-evolutionary dynamics.


Author(s):  
Junnosuke Horita ◽  
Yoh Iwasa ◽  
Yuuya Tachiki

AbstractThe enhanced or reduced growth of juvenile masu salmon (Oncorhynchus masou masou) may result from climate changes to their environment and thus impact on the eco-evolutionary dynamics of their life-history choices. Male juveniles with status, i.e., if their body size is larger than a threshold, stay in the stream and become resident males reproducing for multiple years, while those with smaller status, i.e., their body size is below the threshold, migrate to the ocean and return to the stream one year later to reproduce only once. Since juvenile growth is suppressed by the density of resident males, the fraction of resident males may stay in equilibrium or fluctuate wildly over a 2-year period. When the threshold value evolves, the convergence stable strategy may generate either an equilibrium or large fluctuations of male residents. If environmental changes occur faster than the rate of evolutionary adaptation, the eco-evolutionary dynamics exhibit a qualitative shift in the population dynamics. We also investigated the relative assessment models, in which individual life-history choices are made based on the individual’s relative status within the juvenile population. The eco-evolutionary dynamics are very different from the absolute assessment model, demonstrating the importance of understanding the mechanisms of life history choices when predicting the impacts of climate change.


Author(s):  
Lilian P. Sales ◽  
W. Daniel Kissling ◽  
Mauro Galetti ◽  
Babak Naimi ◽  
Mathias Pires

Sign in / Sign up

Export Citation Format

Share Document