Long-Term Surface Air Temperature Trends Over Mainland China

Author(s):  
Guoyu Ren ◽  
Guoli Tang ◽  
Kangmin Wen

Based on a dataset of national reference and basic stations, which have been quality controlled and inhomogeneity processed, updated surface air temperature (SAT) series of the past 67 (1951–2017) and 113 (1905–2017) years for mainland China are constructed and analyzed. The new temperature series show significant warming trends of 0.24°C/10yr and 0.09°C/10yr respectively for the two periods. The rapid regional warming generally begins from the mid-1980s, about a decade later than the northern hemisphere average SAT change. Warming during the period of 1951–2017 is larger and more significant in the northeast, north, northwest and the Qinghai-Tibetan Plateau, and the most significant SAT increase usually occurs in winter and spring except for the Qinghai-Tibetan Plateau where winter and autumn undergo the largest warming. The slowdown of the warming can be clearly detected after 1998, especially for autumn and winter. The effect of urbanization on trends of the region averaged annual and seasonal mean SAT as calculated from the national reference and basic stations has not been adjusted, despite it being generally large and significant. In north China, the increasing trend of annual mean SAT induced by urbanization for the national stations is 0.10°C/10yr for the period 1961–2015, accounting for at least 31% of the overall annual mean warming. The contribution of urbanization to the overall warming of the past half century in Mainland China has also been summarized and discussed referring to the previous studies.

1992 ◽  
Vol 19 (4) ◽  
pp. 349-353 ◽  
Author(s):  
Robert C. Balling ◽  
Sherwood B. Idso

In reviewing the results of our analyses of European temperature and precipitation data, we see patterns that are similar to those discovered in our prior studies of the United States and the British Isles: precipitation begins to increase at about the time that Northern Hemispheric SO2 emissions began their rapid ascension, while prior upward trends of surface-air temperature are dramatically truncated.We also find that surface-air temperature trends of different localities over the past three-and-a-half decades are closely tied to the amount of aerosol sulphates in the atmosphere above them. The wide range and thrust of these several observations, along with their theoretical expectation, provides strong support for the premise that anthropo-generated climate change is indeed occurring in Europe, but that it may well be SO2-induced rather than CO2-induced.


Author(s):  
Rui Yao ◽  
Lunche Wang ◽  
Xin Huang ◽  
Xiaojun Wu ◽  
Liu Yang ◽  
...  

The global surface air temperature (Ta) has increased significantly in the past several decades. However, it remains disputable how much effect rapid urbanization has had on warming trends in mainland China. In this study, a gridded Ta dataset was created using satellite data. Then, a series of satellite-based methods to evaluate the contribution of urbanization to warming were developed. Subsequently, the contribution of urbanization to warming during 2001–2018 was estimated. The national average Ta was found to have increased significantly (0.23°C/decade) in mainland China. At the national scale, the contribution of urbanization to warming was negligible (less than 1%) since built-up areas account for only approximately 2.66% of the area of China. At the regional scale, the contribution of urbanization was also small in most areas and was even negative in some areas. At the local scale, the contributions of urbanization to warming were 53.18%, 54.30% and 47.25% for the mean, maximum and minimum Ta, respectively, averaged for 31 major cities. This study demonstrated that the contribution of urbanization to warming was significant at the local scale, while the contribution of urbanization to large-scale warming was limited. The contribution of urbanization was underestimated at the local scale but overestimated at the national and regional scales by many previous studies due to the sparse and uneven distribution of meteorological stations.


2021 ◽  
Vol 56 (1-2) ◽  
pp. 635-650 ◽  
Author(s):  
Qingxiang Li ◽  
Wenbin Sun ◽  
Xiang Yun ◽  
Boyin Huang ◽  
Wenjie Dong ◽  
...  

2019 ◽  
Vol 32 (10) ◽  
pp. 2691-2705 ◽  
Author(s):  
Kangmin Wen ◽  
Guoyu Ren ◽  
Jiao Li ◽  
Aiying Zhang ◽  
Yuyu Ren ◽  
...  

Abstract A dataset from 763 national Reference Climate and Basic Meteorological Stations (RCBMS) was used to analyze surface air temperature (SAT) change in mainland China. The monthly historical observational records had been adjusted for urbanization bias existing in the data series of size-varied urban stations, after they were corrected for data inhomogeneities mainly caused by relocation and instrumentation. The standard procedures for creating area-averaged temperature time series and for calculating linear trend were used. Analyses were made for annual and seasonal mean temperature. Annual mean SAT in mainland China as a whole rose by 1.24°C for the last 55 years, with a warming rate of 0.23°C decade−1. This was close to the warming of 1.09°C observed in global mean land SAT over the period 1951–2010. Compared to the SAT before correction, after-corrected data showed that the urbanization bias had caused an overestimate of the annual warming rate of more than 19.6% during 1961–2015. The winter, autumn, spring, and summer mean warming rates were 0.28°, 0.23°, 0.23°, and 0.15°C decade−1, respectively. The spatial patterns of the annual and seasonal mean SAT trends also exhibited an obvious difference from those of the previous analyses. The largest contrast was a weak warming area appearing in central parts of mainland China, which included a small part of southwestern North China, the northwestern Yangtze River, and the eastern part of Southwest China. The annual mean warming trends in Northeast and North China obviously decreased compared to the previous analyses, which caused a relatively more significant cooling in Northeast China after 1998 under the background of global warming slowdown.


2019 ◽  
Vol 54 (3-4) ◽  
pp. 1295-1313
Author(s):  
Yidan Xu ◽  
Jianping Li ◽  
Cheng Sun ◽  
Xiaopei Lin ◽  
Hailong Liu ◽  
...  

AbstractThe global mean surface air temperature (GMST) shows multidecadal variability over the period of 1910–2013, with an increasing trend. This study quantifies the contribution of hemispheric surface air temperature (SAT) variations and individual ocean sea surface temperature (SST) changes to the GMST multidecadal variability for 1910–2013. At the hemispheric scale, both the Goddard Institute for Space Studies (GISS) observations and the Community Earth System Model (CESM) Community Atmosphere Model 5.3 (CAM5.3) simulation indicate that the Northern Hemisphere (NH) favors the GMST multidecadal trend during periods of accelerated warming (1910–1945, 1975–1998) and cooling (1940–1975, 2001–2013), whereas the Southern Hemisphere (SH) slows the intensity of both warming and cooling processes. The contribution of the NH SAT variation to the GMST multidecadal trend is higher than that of the SH. We conduct six experiments with different ocean SST forcing, and find that all the oceans make positive contributions to the GMST multidecadal trend during rapid warming periods. However, only the Indian, North Atlantic, and western Pacific oceans make positive contributions to the GMST multidecadal trend between 1940 and 1975, whereas only the tropical Pacific and the North Pacific SSTs contribute to the GMST multidecadal trend between 2001 and 2013. The North Atlantic and western Pacific oceans have important impacts on modulating the GMST multidecadal trend across the entire 20th century. Each ocean makes different contributions to the SAT multidecadal trend of different continents during different periods.


Sign in / Sign up

Export Citation Format

Share Document