7. Back to the future

Author(s):  
Andrew Davies

‘Back to the future’ considers whether the new and emerging forms of project organization are equipped to deal with the major challenges individuals, organizations, and societies are facing in the 21st century, such as rapid urbanization, climate change, an ageing population, poverty, terrorism, and the migration and refugee crisis. A flexible and adaptive model of project management supported by digital technologies is required for these dynamic and unpredictable projects that are difficult to define with no clear solutions. How will projects of the future be able to respond to these societal challenges and the relentless pressure to innovate and compete in global markets? What can we learn from the past?

2013 ◽  
Vol 10 (5) ◽  
pp. 1525-1557
Author(s):  
K. O'Driscoll ◽  
B. Mayer ◽  
J. Su ◽  
M. Mathis

Abstract. The fate and cycling of two selected legacy persistent organic pollutants (POPs), PCB 153 and γ-HCH, in the North Sea in the 21st century have been modelled with combined hydrodynamic and fate and transport ocean models. To investigate the impact of climate variability on POPs in the North Sea in the 21st century, future scenario model runs for three 10 yr periods to the year 2100 using plausible levels of both in situ concentrations and atmospheric, river and open boundary inputs are performed. Since estimates of future concentration levels of POPs in the atmosphere, oceans and rivers are not available, our approach was to reutilise 2005 values in the atmosphere, rivers and at the open ocean boundaries for every year of the simulations. In this way, we attribute differences between the three 10 yr simulations to climate change only. For the HAMSOM and atmospheric forcing, results of the IPCC A1B (SRES) 21st century scenario are utilised, where surface forcing is provided by the REMO downscaling of the ECHAM5 global atmospheric model, and open boundary conditions are provided by the MPIOM global ocean model. Dry gas deposition and volatilisation of γ-HCH increase in the future relative to the present. In the water column, total mass of γ-HCH and PCB 153 remain fairly steady in all three runs. In sediment, γ-HCH increases in the future runs, relative to the present, while PCB 153 in sediment decreases exponentially in all three runs, but even faster in the future, both of which are the result of climate change. Annual net sinks exceed sources at the ends of all periods.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2219 ◽  
Author(s):  
Kamruzzaman ◽  
Jang ◽  
Cho ◽  
Hwang

: The impacts of climate change on precipitation and drought characteristics over Bangladesh were examined by using the daily precipitation outputs from 29 bias-corrected general circulation models (GCMs) under the representative concentration pathway (RCP) 4.5 and 8.5 scenarios. A precipitation-based drought estimator, namely, the Effective Drought Index (EDI), was applied to quantify the characteristics of drought events in terms of the severity and duration. The changes in drought characteristics were assessed for the beginning (2010–2039), middle (2040–2069), and end of this century (2070–2099) relative to the 1976–2005 baseline. The GCMs were limited in regard to forecasting the occurrence of future extreme droughts. Overall, the findings showed that the annual precipitation will increase in the 21st century over Bangladesh; the increasing rate was comparatively higher under the RCP8.5 scenario. The highest increase in rainfall is expected to happen over the drought-prone northern region. The general trends of drought frequency, duration, and intensity are likely to decrease in the 21st century over Bangladesh under both RCP scenarios, except for the maximum drought intensity during the beginning of the century, which is projected to increase over the country. The extreme and medium-term drought events did not show any significant changes in the future under both scenarios except for the medium-term droughts, which decreased by 55% compared to the base period during the 2070s under RCP8.5. However, extreme drought days will likely increase in most of the cropping seasons for the different future periods under both scenarios. The spatial distribution of changes in drought characteristics indicates that the drought-vulnerable areas are expected to shift from the northwestern region to the central and the southern region in the future under both scenarios due to the effects of climate change.


2011 ◽  
Vol 8 (5) ◽  
pp. 9709-9746 ◽  
Author(s):  
S. Kloster ◽  
N. M. Mahowald ◽  
J. T. Randerson ◽  
P. J. Lawrence

Abstract. Landscape fires during the 21st century are expected to change in response to multiple agents of global change. Important controlling factors include climate controls on the length and intensity of the fire season, fuel availability, and fire management, which are already anthropogenically perturbed today and are predicted to change further in the future. An improved understanding of future fires will contribute to an improved ability to project future anthropogenic climate change, as changes in fire behavior will in turn impact climate. In the present study we used a coupled-carbon-fire model to investigate how changes in climate, demography, and land use may alter fire emissions. We used climate projections following the SRES A1B scenario from two different climate models (ECHAM5/MPI-OM and CCSM) and changes in population. Land use and harvest rates were prescribed according to the RCP 45 scenario. In response to the combined effect of all these drivers, our model estimated, depending on our choice of climate projection, an increase in future (2075–2099) fire carbon emissions by 17 and 62% compared to present day (1985–2009). The largest increase in fire emissions was predicted for Southern Hemisphere South America for both climate projection. For Northern Hemisphere Africa, a region that contributed significantly to the global total fire carbon emissions, the response varied between a decrease and an increase depending on the climate projection. We disentangled the contribution of the single forcing factors to the overall response by conducting an additional set of simulations in which each factor was individually held constant at pre-industrial levels. The two different projections of future climate change evaluated in this study led to increases in global fire carbon emissions by 22% (CCSM) and 66% (ECHAM5/MPI-OM). The RCP 45 projection of harvest and land use led to a decrease in fire carbon emissions by −5%. Changes in human ignition led to an increase in 20%. When we also included changes in fire management efforts to suppress fires in densely populated areas, global fire carbon emission decreased by −6% in response to changes in population density. We concluded from this study that changes in fire emissions in the future are controlled by multiple interacting factors. Although changes in climate led to an increase in future fire emissions this could be globally counterbalanced by coupled changes in land use, harvest, and demography.


Author(s):  
Mohammad Kamruzzaman ◽  
Min-Won Jang ◽  
Jaepil Cho ◽  
Syewoon Hwang

The impacts of climate change on precipitation and drought characteristics over Bangladesh were examined by using the daily precipitation outputs from 29 bias-corrected general circulation models (GCMs) under the representative concentration pathway (RCP) 4.5 and 8.5 scenarios. A precipitation-based drought estimator, namely, the Effective Drought Index (EDI), was applied to quantify the characteristics of drought events in terms of the severity and duration. The changes in drought characteristics were assessed for the beginning (2010–2039), middle (2040–2069), and end of this century (2070–2099) relative to the 1976–2005 baseline. The GCMs were limited in regard to forecasting the occurrence of future extreme droughts. Overall, the findings showed that the annual precipitation will increase in the 21st century over Bangladesh; the increasing rate was comparatively higher under the RCP8.5 scenario. The highest increase of rainfall is expected to happen over the drought-prone northern region. The general trends of drought frequency, duration, and intensity are likely to decrease in the 21st century over Bangladesh under both RCP scenarios, except for the maximum drought intensity during the beginning of the century, which is projected to increase over the country. The extreme and medium-term drought events did not show any significant changes in the future under both scenarios except for the medium-term droughts, which decreased by 55% compared to the base period during the 2070s under RCP8.5. However, extreme drought days will likely increase in most of the cropping seasons for the different future periods under both scenarios. The spatial distribution of changes in drought characteristics indicates that the drought-vulnerable areas are expected to shift from the northwestern region to the central and the southern region in the future under both scenarios due to the effects of climate change.


2018 ◽  
Author(s):  
René R. Wijngaard ◽  
Hester Biemans ◽  
Arthur F. Lutz ◽  
Arun B. Shrestha ◽  
Philippus Wester ◽  
...  

Abstract. The Indus, Ganges, and Brahmaputra (IGB) river basins provide about 900 million people with water resources used for agricultural, domestic, and industrial purposes. These river basins are marked as climate change hotspot, where climate change is expected to affect monsoon dynamics and the amount of meltwater from snow and ice, and thus the amount of water available. Simultaneously, rapid and continuous population growth, and strong economic development will likely result in a rapid increase in water demand. Since quantification of these future trends is missing, it is rather uncertain how the future South Asian water gap will develop. To this end, we assess the combined impacts of climate change and socio-economic development on future blue water scarcity for the IGB until the end of the 21st century. We apply a coupled modelling approach consisting of the distributed cryospheric-hydrological model SPHY, which simulates current and future upstream water supply, and the hydrology and crop production model LPJmL, which simulates current and future downstream water supply and demand. We force the models with an ensemble of eight representative downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios, and a set of land use and socio-economic scenarios that are consistent with the Shared Socio-economic Pathway (SSP) marker scenarios 1 and 3. The simulation outputs are used to analyse changes in water availability, supply, demand, and scarcity. The outcomes show an increase in surface water availability towards the end of the 21st century, which can mainly be attributed to increases in monsoon precipitation. However, despite the increase surface water availability, the strong socio-economic development and associated increase in water demand will likely lead to an increase in the water gap during the 21st century. This indicates that socio-economic development is the key driver in the evolution of the future South Asian water gap.


2020 ◽  
pp. 104225871989942 ◽  
Author(s):  
Gerard George ◽  
Ryan K. Merrill ◽  
Simon J. D. Schillebeeckx

We explore how digital technologies are helping address grand challenges to tackle climate change and promote sustainable development. With digital technologies, entrepreneurial organizations have adopted innovative approaches to tackle seemingly intractable societal challenges. We refer to these broadly as digital sustainability activities. By focusing on the digital toolbox employed by pioneering organizations, we propose a research agenda that generates novel questions for entrepreneurship, business models, and ecosystems as well as new ways of thinking about trust and institutional logics. We believe that digital sustainability can spur empirical advances in entrepreneurship, innovation, and strategy with potential for positive impact on society.


2018 ◽  
Vol 22 (12) ◽  
pp. 6297-6321 ◽  
Author(s):  
René Reijer Wijngaard ◽  
Hester Biemans ◽  
Arthur Friedrich Lutz ◽  
Arun Bhakta Shrestha ◽  
Philippus Wester ◽  
...  

Abstract. The Indus, Ganges, and Brahmaputra (IGB) river basins provide about 900 million people with water resources used for agricultural, domestic, and industrial purposes. These river basins are marked as “climate change hotspots”, where climate change is expected to affect monsoon dynamics and the amount of meltwater from snow and ice, and thus the amount of water available. Simultaneously, rapid and continuous population growth as well as strong economic development will likely result in a rapid increase in water demand. Since quantification of these future trends is missing, it is rather uncertain how the future South Asian water gap will develop. To this end, we assess the combined impacts of climate change and socio-economic development on the future “blue” water gap in the IGB until the end of the 21st century. We apply a coupled modelling approach consisting of the distributed cryospheric–hydrological model SPHY, which simulates current and future upstream water supply, and the hydrology and crop production model LPJmL, which simulates current and future downstream water supply and demand. We force the coupled models with an ensemble of eight representative downscaled general circulation models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios, and a set of land use and socio-economic scenarios that are consistent with the shared socio-economic pathway (SSP) marker scenarios 1 and 3. The simulation outputs are used to analyse changes in the water availability, supply, demand, and gap. The outcomes show an increase in surface water availability towards the end of the 21st century, which can mainly be attributed to increases in monsoon precipitation. However, despite the increase in surface water availability, the strong socio-economic development and associated increase in water demand will likely lead to an increase in the water gap during the 21st century. This indicates that socio-economic development is the key driver in the evolution of the future South Asian water gap. The transgression of future environmental flows will likely be limited, with sustained environmental flow requirements during the monsoon season and unmet environmental flow requirements during the low-flow season in the Indus and Ganges river basins.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1631 ◽  
Author(s):  
Yi-Chiung Chao ◽  
Chi-Wen Chen ◽  
Hsin-Chi Li ◽  
Yung-Ming Chen

In recent years, extreme weather phenomena have occurred worldwide, resulting in many catastrophic disasters. Under the impact of climate change, the frequency of extreme rainfall events in Taiwan will increase, according to a report on climate change in Taiwan. This study analyzed riverbed migrations, such as degradation and aggradation, caused by extreme rainfall events under climate change for the Choshui River, Taiwan. We used the CCHE1D model to simulate changes in flow discharge and riverbed caused by typhoon events for the base period (1979–2003) and the end of the 21st century (2075–2099) according to the climate change scenario of representative concentration pathways 8.5 (RCP8.5) and dynamical downscaling of rainfall data in Taiwan. According to the results on flow discharge, at the end of the 21st century, the average peak flow during extreme rainfall events will increase by 20% relative to the base period, but the time required to reach the peak will be 8 h shorter than that in the base period. In terms of the results of degradation and aggradation of the riverbed, at the end of the 21st century, the amount of aggradation will increase by 33% over that of the base period. In the future, upstream sediment will be blocked by the Chichi weir, increasing the severity of scouring downstream. In addition, due to the increased peak flow discharge in the future, the scouring of the pier may be more serious than it is currently. More detailed 2D or 3D hydrological models are necessary in future works, which could adequately address the erosive phenomena created by bridge piers. Our results indicate that not only will flood disasters occur within a shorter time duration, but the catchment will also face more severe degradation and aggradation in the future.


2019 ◽  
Vol 11 (1) ◽  
pp. 1035-1045
Author(s):  
Farzad Parandin ◽  
Asadollah Khoorani ◽  
Ommolbanin Bazrafshan

Abstract One of the most crucial consequences of climate change involves the alteration of the hydrologic cycle and river flow regime of watersheds. This study was an endeavor to investigate the contributions of climate change to maximum daily discharge (MDD). To this end, the MDD simulation was carried out through implementing the IHACRES precipitation-runoff model in the Payyab Jamash watershed for the 21st century (2016-2100). Subsequently, the observed precipitation and temperature data of the weather stations (1980-2011) as well as 4 multi-model outputs of Global Climate Models (GCMs) under the maximum and minimum Representative Concentration Pathways (RCPs) (2016-2100) were utilized. In order to downscale the output of GCMs, Bias Correction (BC) statistical method was applied. The projections for the 21st century indicated a reduction in Maximum Daily Precipitation (MDP) in comparison with the historic period in the study area. The average projected MDP for the future period was 9 mm/day and 5 mm/ day under 2.6 and 8.5 RCPs (4.6% and 2.6% decrease compared with the historical period), respectively. Moreover, the temperature increased in Jamash Watershed based on 2.6 and 8.5 RCPs by 1∘C and 2∘C(3.7% and 7.4% increase compared with the historical period), respectively. The findings of flow simulation for the future period indicated a decrease in MDD due to the diminished MDP in the study area. The amount of this decrease under RCP8.5 was not remarkable (0.75 m3/s), whereas its value for RCP2.6 was calculated as 40m3/s (respectively, 0.11% and 5.88% decrease compared with the historical period).


2018 ◽  
Vol 16 ◽  
Author(s):  
Wan Nurul Mardiah Wan Mohd Rani

Our environment today is changing because of the rapid urbanization and this scenario has intensified as we face the climate change affect. The challenges and issues that we experience today are more complex, multifaceted and are becoming more visible and frequent. Cities are vulnerable and at the same time have to play significant roles in tackling climate change through various actions of preparedness, mitigation and adaptations. Cities are complex systems combining spatial and non-spatial elements. A system, which consists of interconnected and interdependent elements, can only function well if these elements interact with each other. These elements comprise physical environment, social, infrastructure and economy. The interaction among the elements enable the city to function as a whole. In this context, to achieve a sustainable and resilient city requires a collaborative effort from various disciplines and interrelated expertise to address each element. The increase on the awareness and interest in the related research areas have witness the upsurge on the efforts towards achieving sustainable and resilient cities. Every day new studies and findings emerged from scientists, researchers, academics and scholars deliberating on ways to mitigate, prevent and prepare for the future risks that may pose impact to our cities either physically, socially or economically.


Sign in / Sign up

Export Citation Format

Share Document