6. Perception and action

Author(s):  
Brian Rogers

Perceptual processes have evolved to allow us to act appropriately. ‘Perception and action’ explains that the strong link between perception and action has been revealed in a variety of relatively low-level tasks such as helping us to maintain balance; providing information about our movements within the world (self-motion); allowing us to determine our direction of travel (heading); and helping us to estimate the time before we reach objects in the surrounding world (time-to-contact). James Gibson has suggested that the purpose of our perceptual systems is not to identify objects as objects, but rather to extract information about what we might do with those objects and how we might respond to events in the world.

Author(s):  
Brian Rogers

The word ‘perception’ can be used in two different ways. It can refer to our experience of seeing, hearing, touching, tasting, and smelling objects and individuals around us. It can also refer to the processes that allow us to extract information from the patterns of energy that impinge on our sense organs. Thinking about perception as a set of processes has the advantage that it includes situations where there is no subjective experience. ‘What is perception?’ explains that sometimes our perceptual systems can be fooled and we experience illusions. Is this because of past experience and our knowledge of the world, or is it that we are not extracting the information in the patterns of energy reaching our senses?


Author(s):  
Brian Rogers

The term illusion is used to describe situations where we make mistakes and perceive the surrounding world incorrectly. But what is an illusion? Richard Gregory described illusions as ‘departures from reality’ and this fits with our everyday idea that illusions represent situations where what we perceive does not correspond to some physical characteristic of the particular scene. ‘Delusions about illusions’ considers illusions that have a physiological basis and those with a cognitive basis. It seems very likely that our perceptual systems have evolved to extract the invariant characteristics of the world—the things that don’t change—rather than requiring mechanisms to ‘correct’ for things that do change.


2018 ◽  
Author(s):  
David Barner

Why did humans develop precise systems for measuring experience, like numbers, clocks, andcalendars? I argue that precise representational systems were constructed by earlier generationsof humans because they recognized that their noisy perceptual systems were not capturingdistinctions that existed in the world. Abstract symbolic systems did not arise from perceptualrepresentations, but instead were constructed to describe and explain perceptual experience. Byanalogy, I argue that when children learn number words, they do not rely on noisy perceptualsystems, but instead acquire these words as units in a broader system of procedures, whosemeanings are ultimately defined by logical relations to one another, not perception.


2020 ◽  
Author(s):  
Deon T. Benton ◽  
David H. Rakison

The ability to reason about causal events in the world is fundamental to cognition. Despite the importance of this ability, little is known about how adults represent causal events, what structure or form those representations take, and what the mechanism is that underpins such representations. We report four experiments with adults that examine the perceptual basis on which adults represent four-object launching sequences (Experiments 1 and 2), whether adults representations reflect sensitivity to the causal, perceptual, or causal and perceptual relation among the objects that comprise such sequences (Experiment 3), and whether such representations extend beyond spatiotemporal contiguity to include other low-level stimulus features such as an object’s shape and color (Experiment 4). Based on these results of the four experiments, we argue that a domain-general associative mechanism, rather a modular, domain-specific, mechanism subserves adults’ representations of four-object launching sequences.


Author(s):  
Jaroslav Tir ◽  
Johannes Karreth

Civil wars are one of the most pressing problems facing the world. Common approaches such as mediation, intervention, and peacekeeping have produced some results in managing ongoing civil wars, but they fall short in preventing civil wars in the first place. This book argues for considering civil wars from a developmental perspective to identify steps to assure that nascent, low-level armed conflicts do not escalate to full-scale civil wars. We show that highly structured intergovernmental organizations (IGOs, e.g. the World Bank or IMF) are particularly well positioned to engage in civil war prevention. Such organizations have both an enduring self-interest in member-state peace and stability and potent (economic) tools to incentivize peaceful conflict resolution. The book advances the hypothesis that countries that belong to a larger number of highly structured IGOs face a significantly lower risk that emerging low-level armed conflicts on their territories will escalate to full-scale civil wars. Systematic analyses of over 260 low-level armed conflicts that have occurred around the globe since World War II provide consistent and robust support for this hypothesis. The impact of a greater number of memberships in highly structured IGOs is substantial, cutting the risk of escalation by over one-half. Case evidence from Indonesia’s East Timor conflict, Ivory Coast’s post-2010 election crisis, and from the early stages of the conflict in Syria in 2011 provide additional evidence that memberships in highly structured IGOs are indeed key to understanding why some low-level armed conflicts escalate to civil wars and others do not.


2018 ◽  
Vol 11 (10) ◽  
pp. 5837-5864 ◽  
Author(s):  
Hiren Jethva ◽  
Omar Torres ◽  
Changwoo Ahn

Abstract. Aerosol–cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of adequate knowledge of the complex microphysical and radiative processes of the aerosol–cloud system. Situations when light-absorbing aerosols such as carbonaceous particles and windblown dust overlay low-level cloud decks are commonly found in several regions of the world. Contrary to the known cooling effects of these aerosols in cloud-free scenario over darker surfaces, an overlapping situation of the absorbing aerosols over the cloud can lead to a significant level of atmospheric absorption exerting a positive radiative forcing (warming) at the top of the atmosphere. We contribute to this topic by introducing a new global product of above-cloud aerosol optical depth (ACAOD) of absorbing aerosols retrieved from the near-UV observations made by the Ozone Monitoring Instrument (OMI) onboard NASA's Aura platform. Physically based on an unambiguous “color ratio” effect in the near-UV caused by the aerosol absorption above the cloud, the OMACA (OMI above-cloud aerosols) algorithm simultaneously retrieves the optical depths of aerosols and clouds under a prescribed state of the atmosphere. The OMACA algorithm shares many similarities with the two-channel cloud-free OMAERUV algorithm, including the use of AIRS carbon monoxide for aerosol type identification, CALIOP-based aerosol layer height dataset, and an OMI-based surface albedo database. We present the algorithm architecture, inversion procedure, retrieval quality flags, initial validation results, and results from a 12-year long OMI record (2005–2016) including global climatology of the frequency of occurrence, ACAOD, and aerosol-corrected cloud optical depth. A comparative analysis of the OMACA-retrieved ACAOD, collocated with equivalent accurate measurements from the HSRL-2 lidar for the ORACLES Phase I operation (August–September 2016), revealed a good agreement (R = 0.77, RMSE = 0.10). The long-term OMACA record reveals several important regions of the world, where the carbonaceous aerosols from the seasonal biomass burning and mineral dust originated over the continents are found to overlie low-level cloud decks with moderate (0.3 < ACAOD < 0.5, away from the sources) to higher levels of ACAOD (> 0.8 in the proximity to the sources), including the southeastern Atlantic Ocean, southern Indian Ocean, Southeast Asia, the tropical Atlantic Ocean off the coast of western Africa, and northern Arabian sea. No significant long-term trend in the frequency of occurrence of aerosols above the clouds and ACAOD is noticed when OMI observations that are free from the “row anomaly” throughout the operation are considered. If not accounted for, the effects of aerosol absorption above the clouds introduce low bias in the retrieval of cloud optical depth with a profound impact on increasing ACAOD and cloud brightness. The OMACA aerosol product from OMI presented in this paper offers a crucial missing piece of information from the aerosol loading above cloud that will help us to quantify the radiative effects of clouds when overlaid with aerosols and their resultant impact on cloud properties and climate.


Nature ◽  
1972 ◽  
Vol 240 (5382) ◽  
pp. 463-464 ◽  
Author(s):  
L. LINDNER ◽  
G. A. BRINKMAN ◽  
A. SCHIMMEL
Keyword(s):  

Author(s):  
Anna Borisovna Nikolaeva ◽  

The Arctic is the richest and at the same time the most difficult region to develop in the world. Exploration and exploitation of its deposits are inevitable for Russia and mankind as a whole. The Arctic region is characterized by extreme nature-climatic conditions, with a rather low level of economic development and remoteness from industrial centers, a low level or lack of any infrastructure as well as by instability of the ecological system to anthropogenic impact and a long recovery period. Since the potential of the resources currently being developed will be exhausted within several decades, and the world economies are not yet ready for a full transition to alternative energy resources, it is necessary to search for and develop new hydrocarbon reserves that determines the relevance of the study.The aim of the study is to identify the main problems arising when exploiting hydrocarbons in the Arctic region. The set of problems identified predetermines an integrated approach to their solutions. In this case, it is about reforming legislation, increasing funding, and attracting new participants in the international cooperation. Since the export of oil and gas is traditional for the Russian Federation, exploitation of hydrocarbons in the region is a prerequisite for the further economic development of the country. A state policy aimed at development and improvement of new technologies, reducing environmental risks, and deep scientific research of the Arctic, is needed. The method of expert assessment was used, which is applied for solving complex tasks with lack of information, and impossibility of mathematical formalization of the solution process. The basis for the application of this method is the possibility and ability of experts to assess the importance of the problem under study and development prospects for a certain research direction. The expert assessments were highlighted during the study and analysis of the literature.


Leonardo ◽  
2015 ◽  
Vol 48 (1) ◽  
pp. 48-54 ◽  
Author(s):  
Roy Williams ◽  
Simone Gumtau ◽  
Jenny Mackness

In an integrated view of perception and action, learning involves all the senses, their interaction and cross-modality, rather than multi-modality alone. This can be referred to as synesthetic enactive perception, which forms the basis for more abstract, modality-free knowledge and a potential underpinning for innovative learning design. The authors explore this mode of learning in two case studies: The first focuses on children in Montessori preschools and the second on MEDIATE, an interactive space designed for children on the autistic spectrum that offers a “whole-body” engagement with the world.


Sign in / Sign up

Export Citation Format

Share Document