scholarly journals Diet and Chronic Kidney Disease

2019 ◽  
Vol 10 (Supplement_4) ◽  
pp. S367-S379 ◽  
Author(s):  
Holly Kramer

ABSTRACT Kidney disease affects almost 15% of the US population, and prevalence is anticipated to grow as the population ages and the obesity epidemic continues due to Western dietary practices. The densely caloric Western diet, characterized by high animal protein and low fruit and vegetable content, has fueled the growth of chronic diseases, including chronic kidney disease. The glomerulus or filtering unit of the kidney is very susceptible to barotrauma, and diets high in animal protein impede the glomerulus’ ability to protect itself from hemodynamic injury. High animal protein intake combined with low intake of fruits and vegetables also leads to a high net endogenous acid production requiring augmentation of ammonium excretion in order to prevent acidosis. This higher workload of the kidney to maintain a normal serum bicarbonate level may further exacerbate kidney disease progression. This article reviews the potential mechanisms whereby several key characteristics of the typical Western diet may impact kidney disease incidence and progression. Reducing animal protein intake and egg yolk and increasing intake of fruits and vegetables and fiber may prevent or delay end-stage renal disease, but few clinical trials have examined vegetarian diets for management of chronic kidney disease. More research is needed to determine optimal dietary patterns for the prevention of kidney disease and its progression.

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Koji Toba ◽  
Michihiro Hosojima ◽  
Hideyuki Kabasawa ◽  
Shoji Kuwahara ◽  
Toshiko Murayama ◽  
...  

Abstract Background Dietary acid load has been suggested to mediate the progression of chronic kidney disease (CKD). However, it is unclear what kinds of foods are actually associated with dietary acid load in patients with CKD. The self-administered diet history questionnaire (DHQ), which semi-quantitatively assesses the dietary habits of Japanese individuals through 150 question items, can estimate average daily intake of various foods and nutrients during the previous month. Using the DHQ, we investigated the association of dietary acid load with CKD progression. We also analyzed the kinds of food that significantly affect dietary acid load. Methods Subjects were 96 outpatients with CKD (average estimated glomerular filtration rate [eGFR], 53.0 ± 18.1 ml/min/1.73 m2) at Niigata University Hospital, who had completed the DHQ in 2011. We calculated net endogenous acid production (NEAP) from potassium and protein intake evaluated by the DHQ in order to assess dietary acid load. CKD progression was assessed by comparing eGFR between 2008 and 2014. Results NEAP was not correlated with protein intake (r = 0.088, p = 0.398), but was negatively correlated with potassium intake (r = − 0.748, p < 0.001). Reduction in eGFR from 2008 to 2014 was estimated to be significantly greater in patients with higher NEAP (NEAP > 50.1 mEq/day, n = 45) than in those with lower NEAP (NEAP ≤50.1 mEq/day, n = 50) by 5.9 (95% confidence interval [95%CI], 0.1 to 11.6) ml/min/1.73 m2. According to multiple logistic regression analysis, higher NEAP was significantly associated with lower intake of fruits (odds ratio [OR], 6.454; 95%CI, 2.19 to 19.00), green and yellow vegetables (OR, 5.18; 95%CI, 1.83 to14.66), and other vegetables (OR, 3.87; 95%CI, 1.29 to 11.62). Conclusions Elevated NEAP could be a risk factor for CKD progression. Low intake of fruits and vegetables would increase dietary acid load and might affect the progression of renal dysfunction in Japanese CKD patients.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Sevda Alvirdizadeh ◽  
Emad Yuzbashian ◽  
Parvin Mirmiran ◽  
Shahryar Eghtesadi ◽  
Fereidoun Azizi

Abstract Background The link between dietary protein intake and the risk of kidney dysfunction is always a challenging issue. This study aimed to investigate the relationship between total protein, plant protein, and animal protein intake with the risk of incident chronic kidney disease (CKD). Methods This study was performed on 1639 adults aged ≥27 years who participated in the Tehran Lipid and Glucose Study. Dietary data were evaluated using a valid and reliable semi-quantitative food frequency questionnaire (FFQ). Total protein content, plant protein, and animal protein of each participant were calculated. Glomerular filtration rate (GFR) less than 60 mL / min / 1.73 m2 has been considered as the definition of CKD. Odds Ratio (OR) was calculated using logistic regression to show the association between the risk of incident CKD and dietary exposures. Results After adjusting for age, sex, body mass index, smoking, total energy intake, total fiber intake, dietary fat, physical activity, diabetes, and hypertension, there was no significant association of total protein and animal protein consumptions with the incidence of CKD. After adjustment for confounders, compared with the lowest tertile of plant protein consumption, OR of incident CKD in the highest tertile was 0.29 (95% confidence interval [95% CI] 0.15 to 0.55) with a significant trend (P for trend < 0.001). Conclusion The results of this study confirmed an inverse association between plant protein intake and the risk of incident CKD, which demonstrates the protective role of plant-based protein in a diet on kidney function.


Author(s):  
Dominique M. Bovée ◽  
Lodi C. W. Roksnoer ◽  
Cornelis van Kooten ◽  
Joris I. Rotmans ◽  
Liffert Vogt ◽  
...  

Abstract Background Acidosis-induced kidney injury is mediated by the intrarenal renin-angiotensin system, for which urinary renin is a potential marker. Therefore, we hypothesized that sodium bicarbonate supplementation reduces urinary renin excretion in patients with chronic kidney disease (CKD) and metabolic acidosis. Methods Patients with CKD stage G4 and plasma bicarbonate 15–24 mmol/l were randomized to receive sodium bicarbonate (3 × 1000 mg/day, ~ 0.5 mEq/kg), sodium chloride (2 × 1,00 mg/day), or no treatment for 4 weeks (n = 15/arm). The effects on urinary renin excretion (primary outcome), other plasma and urine parameters of the renin-angiotensin system, endothelin-1, and proteinuria were analyzed. Results Forty-five patients were included (62 ± 15 years, eGFR 21 ± 5 ml/min/1.73m2, plasma bicarbonate 21.7 ± 3.3 mmol/l). Sodium bicarbonate supplementation increased plasma bicarbonate (20.8 to 23.8 mmol/l) and reduced urinary ammonium excretion (15 to 8 mmol/day, both P < 0.05). Furthermore, a trend towards lower plasma aldosterone (291 to 204 ng/L, P = 0.07) and potassium (5.1 to 4.8 mmol/l, P = 0.06) was observed in patients receiving sodium bicarbonate. Sodium bicarbonate did not significantly change the urinary excretion of renin, angiotensinogen, aldosterone, endothelin-1, albumin, or α1-microglobulin. Sodium chloride supplementation reduced plasma renin (166 to 122 ng/L), and increased the urinary excretions of angiotensinogen, albumin, and α1-microglobulin (all P < 0.05). Conclusions Despite correction of acidosis and reduction in urinary ammonium excretion, sodium bicarbonate supplementation did not improve urinary markers of the renin-angiotensin system, endothelin-1, or proteinuria. Possible explanations include bicarbonate dose, short treatment time, or the inability of urinary renin to reflect intrarenal renin-angiotensin system activity. Graphic abstract


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1205
Author(s):  
Yoshitaka Isaka

Multi-factors, such as anorexia, activation of renin-angiotensin system, inflammation, and metabolic acidosis, contribute to malnutrition in chronic kidney disease (CKD) patients. Most of these factors, contributing to the progression of malnutrition, worsen as CKD progresses. Protein restriction, used as a treatment for CKD, can reduce the risk of CKD progression, but may worsen the sarcopenia, a syndrome characterized by a progressive and systemic loss of muscle mass and strength. The concomitant rate of sarcopenia is higher in CKD patients than in the general population. Sarcopenia is also associated with mortality risk in CKD patients. Thus, it is important to determine whether protein restriction should be continued or loosened in CKD patients with sarcopenia. We may prioritize protein restriction in CKD patients with a high risk of end-stage kidney disease (ESKD), classified to stage G4 to G5, but may loosen protein restriction in ESKD-low risk CKD stage G3 patients with proteinuria <0.5 g/day, and rate of eGFR decline <3.0 mL/min/1.73 m2/year. However, the effect of increasing protein intake alone without exercise therapy may be limited in CKD patients with sarcopenia. The combination of exercise therapy and increased protein intake is effective in improving muscle mass and strength in CKD patients with sarcopenia. In the case of loosening protein restriction, it is safe to avoid protein intake of more than 1.5 g/kgBW/day. In CKD patients with high risk in ESKD, 0.8 g/kgBW/day may be a critical point of protein intake.


2020 ◽  
Author(s):  
Marcin Adamczak ◽  
Piotr Kuczera ◽  
Andrzej Wiecek

Kidneys play the major role in the synthesis and degradation of several hormones. Different coexisting conditions such as inflammation, malnutrition and metabolic acidosis and applied treatment may also cause endocrine abnormalities in chronic kidney disease (CKD) patients. A tendency towards decreased thyroxin and triiodothyronine with normal serum concentrations of reversed triiodothyronine (as opposed to other chronic non-thyroid, non-kidney diseases) and thyroid stimulating hormone are observed. As far as the somatotopic axis is concerned, in CKD normal serum concentration of growth hormone and its effector – the insulin-like growth factor are observed. Nevertheless, due to the phenomenon of GH/IGF-1 “resistance” CKD patients usually present a phenotype resembling GH deficiency. Serum prolactin concentrations are often elevated in CKD women and men. This leads to the dysregulation of the pituitary-gonadal axis causing hypogonadism and it’s clinical consequences regardless of patient’s gender. The alterations in hormones of gonadal origin caused by uremia, together with hyperprolactinemia lead to the development of sexual dysfunction and infertility in men and women. The alterations of thyroid, pituitary gland and gonads associated with CKD are discussed in this chapter. This review contains 4 tables, and 64 references. Keywords: chronic kidney disease, hypothyroidism, hyperthyroidism, growth hormone, recombinant human GH, insulin-like growth factors, hemodialysis


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Martin Gritter ◽  
Rosa Wouda ◽  
Stanley Ming Hol Yeung ◽  
Liffert Vogt ◽  
Martin De Borst ◽  
...  

Abstract Background and Aims A high potassium (K+) diet is part of a healthy lifestyle and reduces blood pressure. Indeed, salt substitution (replacing NaCl by KCl) reduces the incidence of hypertension. Furthermore, emerging data show that high urinary K+ excretion in patients with chronic kidney disease (CKD) is associated with better kidney outcomes. This suggests that higher dietary K+ intake is also beneficial for patients with CKD, but a potential concern is hyperkalemia. Thus, there is a need for data on the effects of KCl supplementation in patients with CKD. Methods The effect of KCl supplementation (40 mEq/day) was studied by analyzing the 2-week open-label run-in phase of an ongoing randomized clinical trial studying the renoprotective effects of 2-year K+ supplementation in patients with progressive CKD and hypertension. The aims were to (1) analyze the effects of KCl supplementation on whole-blood K+ (WBK+) and acid-base balance, (2) identify factors associated with a rise in WBK+, and (3) identify risk factors for hyperkalemia (WBK+ &gt; 5.5 mEq/L) . Results In 200 patients (68 ± 11 years, 74% males, eGFR 32 ± 9 mL/min/1.73 m2, 84% on renin-angiotensin inhibitors, 39% with diabetes mellitus), KCl supplementation increased urinary K+ excretion from 73 ± 24 to 106 ± 29 mEq/day, urinary chloride excretion from 144 ± 63 to 174 ± 60 mEq/day, WBK+ from 4.3 ± 0.5 to 4.7 ± 0.6 mEq/L, and plasma aldosterone from 294 to 366 ng/L (P &lt; 0.01 for all). Plasma chloride increased from 104 ± 4 to 106 ± 4 mEq/L, while plasma bicarbonate decreased from 24.4 ± 3.4 to 23.6 ± 3.5 mEq/L and venous pH from 7.36 ± 0.03 to 7.34 ± 0.04 (P &lt; 0.001 for all); urinary ammonium excretion did not increase (stable at 17.2 mEq/day). KCl supplementation had no significant effect on plasma renin (33 to 39 pg/mL), urinary sodium excretion (156 ± 63 to 155 ± 65 mEq/day), systolic blood pressure (134 ± 16 to 133 ± 17 mm Hg), eGFR (32 ± 9 to 31 ± 8 mL/min/1.73 m2) or albuminuria (stable at 0.2 g/day). Multivariable linear regression identified that age, female sex, and renin-angiotensin inhibitor use were associated with an increase in WBK+, while diuretic use, baseline WBK+, and baseline bicarbonate were inversely associated with a change in WBK+ after KCl supplementation (Table 1). The majority of patients (n = 181, 91%) remained normokalemic (WBK+ 4.6 ± 0.4 mEq/L). The 19 patients who did develop hyperkalemia (WBK+ 5.9 ± 0.4 mEq/L) were older (75 ± 8 vs. 67 ± 11 years), had lower eGFR (24 ± 8 vs. 32 ± 8 mL/min/1.73 m2), lower baseline bicarbonate (22.3 ± 3.6 vs. 24.6 ± 3.3 mEq/L), higher baseline WBK+ (4.8 ± 0.4 vs. 4.2 ± 0.4 mEq/L), and lower baseline urinary K+ excretion (64 ± 16 vs. 73 ± 25 mEq/day, P &lt; 0.05 for all). Conclusions The majority of patients with advanced CKD remains normokalemic upon KCl supplementation, despite low eGFR, diabetes mellitus, or the use of renin-angiotensin inhibitors. This short-term study illustrates the feasibility of investigating the renoprotective potential of increased K+ intake or KCl-enriched salt in patients with CKD and provides the characteristics of patients in whom this is safe. Our study also shows that KCl supplementation causes a tendency towards metabolic acidosis, possibly by preventing an increase in ammoniagenesis. Longer-term studies are required to study the anti-hypertensive and renoprotective potential of K+ supplementation.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Joseph Powell ◽  
Eric S Nylen ◽  
Jonathan Myers ◽  
Pamela Karasik ◽  
Hans Moore ◽  
...  

Abstract Introduction: Type 2 diabetes mellitus (T2DM) and hypertension (HTN) are considered strong risk factors for developing chronic kidney disease (CKD). Increased cardiorespiratory fitness (CRF) is associated with lower CKD risk. However, the CRF-CKD association in patients with T2DM and/or HTN has not been assessed.Methods: We identified 9,751 patients (age 58.6 + 10.1 years) with T2DM (N=1,444) or HTN (n=5,031) or both (n=3,276) prior to a maximal standardized exercise treadmill test (ETT) and no evidence of ischemia as indicated by the ETT. We established four CRF categories based on age-adjusted peak metabolic equivalents (METs) achieved: Least-Fit (4.6±1.2 METs; n=2,231); Low-Fit Fit (6.4±1.1 METs; n=2,693); Moderate-Fit (8.0±1.0 METs; n=2,432); and High-Fit (10.8±2.1 METs; n=2,395). We performed multivariable Cox Regression analyses to access the risk of CKD according to fitness. The models were adjusted for age, body mass index (BMI), traditional risk factors and medications. Results: During the median follow-up of 12.4 years, 1,118 patients developed CKD, accounting for 9.1 events/ 1,000 person-years of observation. The association between CRF and CKD was inverse and graded. The risk of CKD was 21% lower (Hazard Ratio [HR] 0.79; 95% confidence interval [CI] 0.77-0.81). When CRF categories were considered, the CKD risk was 44% lower for Moderate-Fit patients (HR 0.56; 95% CI 0.48-0.67) and 80% lower for High-Fit (HR 0.20; 95% CI 0.15-0.25). Similar findings were noted in patients with both T2DM and HTN. Conclusions: We noted an inverse and dose-response association between CRF and CKD incidence. The risk was attenuated significantly beyond a mean peak MET level of 8.0±1.0, suggesting that moderate increases in exercise capacity confers favorable health benefits in patients at high risk of developing CKD.


Sign in / Sign up

Export Citation Format

Share Document