scholarly journals Perspective: Metabotyping—A Potential Personalized Nutrition Strategy for Precision Prevention of Cardiometabolic Disease

2019 ◽  
Vol 11 (3) ◽  
pp. 524-532 ◽  
Author(s):  
Marie Palmnäs ◽  
Carl Brunius ◽  
Lin Shi ◽  
Agneta Rostgaard-Hansen ◽  
Núria Estanyol Torres ◽  
...  

ABSTRACT Diet is an important, modifiable lifestyle factor of cardiometabolic disease risk, and an improved diet can delay or even prevent the onset of disease. Recent evidence suggests that individuals could benefit from diets adapted to their genotype and phenotype: that is, personalized nutrition. A novel strategy is to tailor diets for groups of individuals according to their metabolic phenotypes (metabotypes). Randomized controlled trials evaluating metabotype-specific responses and nonresponses are urgently needed to bridge the current gap of knowledge with regard to the efficacy of personalized strategies in nutrition. In this Perspective, we discuss the concept of metabotyping, review the current literature on metabotyping in the context of cardiometabolic disease prevention, and suggest potential strategies for metabotype-based nutritional advice for future work. We also discuss potential determinants of metabotypes, including gut microbiota, and highlight the use of metabolomics to define effective markers for cardiometabolic disease–related metabotypes. Moreover, we hypothesize that people at high risk for cardiometabolic diseases have distinct metabotypes and that individuals grouped into specific metabotypes may respond differently to the same diet, which is being tested in a project of the Joint Programming Initiative: A Healthy Diet for a Healthy Life.

Author(s):  
Ninna Karsbæk Senftleber ◽  
Maria Overvad ◽  
Inger Katrine Dahl-Petersen ◽  
Peter Bjerregaard ◽  
Marit Eika Jørgensen

The Inuit in Greenland have gone through dramatic lifestyle changes during the last half century. More time is spent being sedentary and imported foods replaces traditional foods like seal and whale. The population has also experienced a rapid growth in obesity and metabolic disturbances and diabetes is today common despite being almost unknown few decades ago. In this paper, we describe and discuss the role of lifestyle changes and genetics for Inuit metabolic health. Novelty: • Cardiometabolic disease risk has increased in Greenland. Lifestyle changes and possibly gene-lifestyle interactions play a role.


2019 ◽  
Vol 49 (10) ◽  
pp. 1758-1758
Author(s):  
Ragni H. Mørch ◽  
Ingrid Dieset ◽  
Ann Færden ◽  
Elina J. Reponen ◽  
Sigrun Hope ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abanish Singh ◽  
Michael A. Babyak ◽  
Mario Sims ◽  
Solomon K. Musani ◽  
Beverly H. Brummett ◽  
...  

Abstract In prior work, we identified a novel gene-by-stress association of EBF1’s common variation (SNP rs4704963) with obesity (i.e., hip, waist) in Whites, which was further strengthened through multiple replications using our synthetic stress measure. We now extend this prior work in a precision medicine framework to find the risk group using harmonized data from 28,026 participants by evaluating the following: (a) EBF1 SNPxSTRESS interaction in Blacks; (b) 3-way interaction of EBF1 SNPxSTRESS with sex, race, and age; and (c) a race and sex-specific path linking EBF1 and stress to obesity to fasting glucose to the development of cardiometabolic disease risk. Our findings provided additional confirmation that genetic variation in EBF1 may contribute to stress-induced human obesity, including in Blacks (P = 0.022) that mainly resulted from race-specific stress due to “racism/discrimination” (P = 0.036) and “not meeting basic needs” (P = 0.053). The EBF1 gene-by-stress interaction differed significantly (P = 1.01e−03) depending on the sex of participants in Whites. Race and age also showed tentative associations (Ps = 0.103, 0.093, respectively) with this interaction. There was a significant and substantially larger path linking EBF1 and stress to obesity to fasting glucose to type 2 diabetes for the EBF1 minor allele group (coefficient = 0.28, P = 0.009, 95% CI = 0.07-0.49) compared with the same path for the EBF1 major allele homozygotes in White females and also a similar pattern of the path in Black females. Underscoring the race-specific key life-stress indicators (e.g., racism/discrimination) and also the utility of our synthetic stress, we identified the potential risk group of EBF1 and stress-induced human obesity and cardiometabolic disease.


2020 ◽  
Vol 112 (4) ◽  
pp. 967-978
Author(s):  
Abishek Stanley ◽  
John Schuna ◽  
Shengping Yang ◽  
Samantha Kennedy ◽  
Moonseong Heo ◽  
...  

ABSTRACT Background The normal-weight BMI range (18.5–24.9 kg/m2) includes adults with body shape and cardiometabolic disease risk features of excess adiposity, although a distinct phenotype developed on a large and diverse sample is lacking. Objective To identify demographic, behavioral, body composition, and health-risk biomarker characteristics of people in the normal-weight BMI range who are at increased risk of developing cardiovascular and metabolic diseases based on body shape. Methods Six nationally representative waist circumference index (WCI, weight/height0.5) prediction formulas, with BMI and age as covariates, were developed using data from 17,359 non-Hispanic (NH) white, NH black, and Mexican-American NHANES 1999–2006 participants. These equations were then used to predict WCI in 5594 NHANES participants whose BMI was within the normal weight range. Men and women in each race/Hispanic-origin group were then separated into high, medium, and low tertiles based on the difference (residual) between measured and predicted WCI. Characteristics were compared across tertiles; P values for significance were adjusted for multiple comparisons. Results Men and women in the high WCI residual tertile, relative to their BMI and age-equivalent counterparts in the low tertile, had significantly lower activity levels; higher percent trunk and total body fat (e.g. NH white men, X ± SE, 25.3 ± 0.2% compared with 20.4 ± 0.2%); lower percent appendicular lean mass (skeletal muscle) and bone mineral content; and higher plasma insulin and triglycerides, higher homeostatic model assessment of insulin resistance (e.g. NH white men, 1.45 ± 0.07 compared with 1.08 ± 0.06), and lower plasma HDL cholesterol. Percent leg fat was also significantly higher in men but lower in women. Similar patterns of variable statistical significance were present within sex and race/ethnic groups. Conclusions Cardiometabolic disease risk related to body shape in people who are normal weight according to BMI is characterized by a distinct phenotype that includes potentially modifiable behavioral health risk factors.


2010 ◽  
Vol 42 ◽  
pp. 253
Author(s):  
Shawn S. Rockey ◽  
Christopher M. Dorozynski ◽  
Steven Bischoff ◽  
Derek T. Smith

Hepatology ◽  
2020 ◽  
Author(s):  
Michelle T. Long ◽  
Xiaoyu Zhang ◽  
Hanfei Xu ◽  
Ching‐Ti Liu ◽  
Kathleen E. Corey ◽  
...  

Author(s):  
Alaa Badawi ◽  
Bibiana Garcia-Bailo ◽  
Eman Sadoun ◽  
Laura Da Costa ◽  
Paul Arora ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document