scholarly journals Effects of walnut consumption on blood lipids and other cardiovascular risk factors: an updated meta-analysis and systematic review of controlled trials

2018 ◽  
Vol 108 (1) ◽  
pp. 174-187 ◽  
Author(s):  
Marta Guasch-Ferré ◽  
Jun Li ◽  
Frank B Hu ◽  
Jordi Salas-Salvadó ◽  
Deirdre K Tobias

ABSTRACT BACKGROUND Intervention studies suggest that incorporating walnuts into the diet may improve blood lipids without promoting weight gain. OBJECTIVE We conducted a systematic review and meta-analysis of controlled trials evaluating the effects of walnut consumption on blood lipids and other cardiovascular risk factors. Design We conducted a comprehensive search of PubMed and EMBASE databases (from database inception to January 2018) of clinical trials comparing walnut-enriched diets with control diets. We performed random-effects meta-analyses comparing walnut-enriched and control diets for changes in pre-post intervention in blood lipids (mmol/L), apolipoproteins (mg/dL), body weight (kg), and blood pressure (mm Hg). RESULTS Twenty-six clinical trials with a total of 1059 participants were included. The following weighted mean differences (WMDs) in reductions were obtained for walnut-enriched diets compared with control groups: −6.99 mg/dL (95% CI: −9.39, −4.58 mg/dL; P < 0.001) (3.25% greater reduction) for total blood cholesterol (TC) and −5.51 mg/dL (95% CI: −7.72, −3.29 mg/dL; P < 0.001) (3.73% greater reduction) for low-density lipoprotein (LDL) cholesterol. Triglyceride concentrations were also reduced in walnut-enriched diets compared with control [WMD = −4.69 (95% CI: −8.93, −0.45); P = 0.03; 5.52% greater reduction]. More pronounced reductions in blood lipids were observed when walnut interventions were compared with American and Western diets [WMD for TC = −12.30 (95% CI: −23.17, −1.43) and for LDL = −8.28 (95% CI: −13.04, −3.51); P < 0.001]. Apolipoprotein B (mg/dL) was also reduced significantly more on walnut-enriched diets compared with control groups [WMD = −3.74 (95% CI: −6.51, −0.97); P = 0.008] and a trend towards a reduction was observed for apolipoprotein A [WMD = −2.91 (95% CI: −5.98, 0.08); P = 0.057]. Walnut-enriched diets did not lead to significant differences in weight change (kg) compared with control diets [WMD = −0.12 (95% CI: −2.12, 1.88); P = 0.90], systolic blood pressure (mm Hg) [WMD = −0.72 (95% CI: −2.75, 1.30); P = 0.48], or diastolic blood pressure (mm Hg) [WMD = −0.10 (95% CI: −1.49, 1.30); P = 0.88]. Conclusions Incorporating walnuts into the diet improved blood lipid profile without adversely affecting body weight or blood pressure.

2019 ◽  
Vol 10 (6) ◽  
pp. 1076-1088 ◽  
Author(s):  
Michelle A Lee-Bravatti ◽  
Jifan Wang ◽  
Esther E Avendano ◽  
Ligaya King ◽  
Elizabeth J Johnson ◽  
...  

ABSTRACT Evidence suggests that eating nuts may reduce the risk of cardiovascular disease (CVD). We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) evaluating almond consumption and risk factors for CVD. MEDLINE, Cochrane Central, Commonwealth Agricultural Bureau, and previous systematic reviews were searched from 1990 through June 2017 for RCTs of ≥3 wk duration that evaluated almond compared with no almond consumption in adults who were either healthy or at risk for CVD. The most appropriate stratum was selected with an almond dose closer to 42.5 g, with a control most closely matched for macronutrient composition, energy intake, and similar intervention duration. The outcomes included risk factors for CVD. Random-effects model meta-analyses and subgroup meta-analyses were performed. Fifteen eligible trials analyzed a total of 534 subjects. Almond intervention significantly decreased total cholesterol (summary net change: −10.69 mg/dL; 95% CI: −16.75, −4.63 mg/dL), LDL cholesterol (summary net change: −5.83 mg/dL; 95% CI: −9.91, −1.75 mg/dL); body weight (summary net change: −1.39 kg; 95% CI: −2.49, −0.30 kg), HDL cholesterol (summary net change: −1.26 mg/dL; 95% CI: −2.47, −0.05 mg/dL), and apolipoprotein B (apoB) (summary net change: −6.67 mg/dL; 95% CI: −12.63, −0.72 mg/dL). Triglycerides, systolic blood pressure, apolipoprotein A1, high-sensitivity C-reactive protein, and lipoprotein (a) showed no difference between almond and control in the main and subgroup analyses. Fasting blood glucose, diastolic blood pressure, and body mass index significantly decreased with almond consumption of >42.5 g compared with ≤42.5 g. Almond consumption may reduce the risk of CVD by improving blood lipids and by decreasing body weight and apoB. Substantial heterogeneity in eligible studies regarding almond interventions and dosages precludes firmer conclusions.


Spinal Cord ◽  
2021 ◽  
Author(s):  
Peter Francis Raguindin ◽  
Gion Fränkl ◽  
Oche Adam Itodo ◽  
Alessandro Bertolo ◽  
Ramona Maria Zeh ◽  
...  

Abstract Study design Systematic review and meta-analysis. Objective To determine the difference in cardiovascular risk factors (blood pressure, lipid profile, and markers of glucose metabolism and inflammation) according to the neurological level of spinal cord injury (SCI). Methods We searched 5 electronic databases from inception until July 4, 2020. Data were extracted by two independent reviewers using a pre-defined data collection form. The pooled effect estimate was computed using random-effects models, and heterogeneity was calculated using I2 statistic and chi-squared test (CRD42020166162). Results We screened 4863 abstracts, of which 47 studies with 3878 participants (3280 males, 526 females, 72 sex unknown) were included in the meta-analysis. Compared to paraplegia, individuals with tetraplegia had lower systolic and diastolic blood pressure (unadjusted weighted mean difference, −14.5 mmHg, 95% CI −19.2, −9.9; −7.0 mmHg 95% CI −9.2, −4.8, respectively), lower triglycerides (−10.9 mg/dL, 95% CI −19.7, −2.1), total cholesterol (−9.9 mg/dL, 95% CI −14.5, −5.4), high-density lipoprotein (−1.7 mg/dL, 95% CI −3.3, −0.2) and low-density lipoprotein (−5.8 mg/dL, 95% CI −9.0, −2.5). Comparing individuals with high- vs. low-thoracic SCI, persons with higher injury had lower systolic and diastolic blood pressure (−10.3 mmHg, 95% CI −13.4, −7.1; −5.3 mmHg 95% CI −7.5, −3.2, respectively), while no differences were found for low-density lipoprotein, serum glucose, insulin, and inflammation markers. High heterogeneity was partially explained by age, prevalent cardiovascular diseases and medication use, body mass index, sample size, and quality of studies. Conclusion In SCI individuals, the level of injury may be an additional non-modifiable cardiovascular risk factor. Future well-designed longitudinal studies with sufficient follow-up and providing sex-stratified analyses should confirm our findings and explore the role of SCI level in cardiovascular health and overall prognosis and survival.


2020 ◽  
Author(s):  
Lisa Te Morenga ◽  
AJ Howatson ◽  
RM Jones ◽  
J Mann

Background: Dietary sugars have been suggested as a cause of obesity, several chronic diseases, and a range of cardiometabolic risk factors, but there is no convincing evidence of a causal relation between sugars and risk factors other than body weight. Objective: We conducted a systematic review and meta-analysis of randomized controlled trials that examined effects of the modification of dietary free sugars on blood pressure and lipids. Design: Systematic searches were conducted in OVID Medline, Embase, Scopus, Cumulative Index to Nursing and Allied Health Literature, and Web of Science databases (to August 2013) to identify studies that reported intakes of free sugars and at least one lipid or blood pressure outcome. The minimum trial duration was 2 wk. We pooled data by using inverse-variance methods with random-effects models. Results: A total of 39 of 11,517 trials identified were included; 37 trials reported lipid outcomes, and 12 trials reported blood pressure outcomes. Higher compared with lower sugar intakes significantly raised triglyceride concentrations [mean difference (MD):0.11 mmol/L; 95% CI: 0.07, 0.15 mmol/L; P < 0.0001], total cholesterol (MD: 0.16 mmol/L; 95% CI: 0.10, 0.24 mmol/L; P < 0.0001), lowdensity lipoprotein cholesterol (0.12 mmol/L; 95% CI: 0.05, 0.19 mmol/L; P = 0.0001), and high-density lipoprotein cholesterol (MD: 0.02 mmol/L; 95% CI: 0.00, 0.03 mmol/L; P = 0.03). Subgroup analyses showed the most marked relation between sugar intakes and lipids in studies in which efforts were made to ensure an energy balance and when no difference in weight change was reported. Potential explanatory factors, including a weight change, in most instances explained <15% of the heterogeneity between studies (I2 = 36-75%). The effect of sugar intake on blood pressure was greatest in trials ≥8 wk in duration [MD: 6.9 mm Hg (95% CI: 3.4, 10.3 mm Hg; P<0.001) for systolic blood pressure and 5.6 mm Hg (95% CI: 2.5, 8.8 mm Hg; P = 0.0005) for diastolic blood pressure]. Conclusions: Dietary sugars influence blood pressure and serum lipids. The relation is independent of effects of sugars on body weight. Protocols for this review were registered separately for effects of sugars on blood pressure and lipids in the PROSPERO International prospective register of systematic reviews as PROSPERO 2012: CRD42012002379 and 2012: CRD42012002437, respectively. © 2014 American Society for Nutrition.


2020 ◽  
Vol 11 (6) ◽  
pp. 599-616 ◽  
Author(s):  
Maleesa M. Pathirana ◽  
Zohra S. Lassi ◽  
Claire T. Roberts ◽  
Prabha H. Andraweera

AbstractGestational diabetes mellitus (GDM) is a pregnancy complication that affects one in seven pregnancies. Emerging evidence demonstrates that children born of pregnancies complicated by GDM may be at increased risk of cardiovascular disease (CVD) in adulthood. Therefore, the aim of this study was to determine cardiovascular risk factors in offspring exposed to GDM in utero. PubMed, CINAHL, SCOPUS, and EMBASE databases were searched. Information was extracted on established CVD risk factors including blood pressure, lipids, blood glucose, fasting insulin, body mass index (BMI), and endothelial/microvascular function. The review protocol is registered in PROSPERO (CRD42018094983). Prospective and retrospective studies comparing offspring exposed to GDM compared to controls (non-GDM pregnancies) were considered. We included studies that defined GDM based on the International Association of Diabetes and Pregnancy Study Groups (IADPSG) definition, or prior definitions. The PRISMA guidelines were followed in conducting this systematic review. Methodological quality was assessed using the Newcastle–Ottawa Quality Assessment Scale. Study selection, data extraction, and quality assessment were done by two independent reviewers. The data were pooled using a random-effects model. Of 59 eligible studies, 24 were included in the meta-analysis. Offspring exposed to GDM had higher systolic blood pressure (mean difference (MD): 1.75 mmHg, 95% CI 0.57–2.94; eight studies, 7264 participants), BMI z-score (MD 0.11, 95% CI 0.02–0.20; nine studies, 8759 participants), and glucose (standard MD 0.43, 95% CI 0.08–0.77; 11 studies, 6423 participants) than control participants. In conclusion, offspring exposed to GDM have elevated systolic blood pressure, BMI, and glucose. Those exposed to GDM in utero may benefit from early childhood blood pressure measurements.


Author(s):  
Anahita Mansoori ◽  
Zahra Salimi ◽  
Seyyed Ahmad Hosseini ◽  
Razie Hormoznejad ◽  
Maryam Asadi

Background: Several randomized clinical trials (RCTs) has assessed the effect of Anethum graveolens L. (AG) or dill supplementation on lipid profile in adults with cardiovascular risk factors with different results. Therefore, we decided to conduct a systematic review and meta-analysis regarding the available randomized controlled trials to assess AG supplementation's efficacy on lipid profile in adults with cardiovascular risk factors. Methods: PubMed, Embase, Cochrane's database, Ovid, Web of Science, ProQuest, Scopus, and Google Scholar were searched to find relevant articles investigating the effect of AG on the lipid profile of adults with risk factors for cardiovascular disease up to December 2020. Six trials with seven treatment armsmet the inclusion criteria. A random-effects model was used in the meta-analysis. To test heterogeneity, I2 statistics and Cochrane Q test were applied. Results: The results reported a significant improving effect of AG on TG [WMD = -29.20, 95% confidence interval (CI): -34.73,-23.68 mg/dL, p < 0.001], TC (WMD = -16.46, 95%CI: -21.54,-11.39 mg/dL, p < 0.001), LDL-C (WMD = -13.90, 95%CI: -16.08, -11.72 mg/dL, p < 0.001), and HDL-C (WMD = 4.01, 95%CI: 3.48, 4.54 mg/dL, p < 0.001). Conclusion: This meta-analysis of randomized controlled clinical trials revealed that consuming AG extract for more than six weeks might improve lipid profile in adults with cardiovascular risk factors.


2019 ◽  
Vol 10 (11) ◽  
pp. 6987-6998 ◽  
Author(s):  
Amir Hadi ◽  
Moein Askarpour ◽  
Maryam Miraghajani ◽  
Michael E. Symonds ◽  
Ali Sheikhi ◽  
...  

Based on our findings, strawberry supplements that contained 10–454 g day−1 freeze-dried/fresh strawberries and taken for 3–12 weeks can improve DBP, CRP, MDA and LDL.


Sign in / Sign up

Export Citation Format

Share Document