scholarly journals The acquisitive-conservative axis of leaf trait variation emerges even in homogeneous environments

2020 ◽  
Author(s):  
Lucas D Gorné ◽  
Sandra Díaz ◽  
Vanessa Minden ◽  
Yusuke Onoda ◽  
Koen Kramer ◽  
...  

Abstract Background and Aims The acquisitive-conservative axis of plant ecological strategies results in a pattern of leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environmental gradients. Little work has been published on intraspecific patterns of leaf trait covariation in the absence of strong environmental variation. Methods We analysed covariation of four leaf functional traits (SLA: specific leaf area, LDMC: leaf dry matter content, Ft: force to tear, and Nm: leaf nitrogen content) in six Poaceae and four Fabaceae species common in the dry Chaco forest of Central Argentina, growing in the field and in a common garden. We compared intraspecific covariation patterns (slopes, correlation and effect size) of leaf functional traits with global interspecific covariation patterns. Additionally, we checked for possible climatic and edaphic factors that could affect the intraspecific covariation pattern. Key Results We found negative correlations for the LDMC-SLA, Ft-SLA, LDMC-Nm, and Ft-Nm trait pairs. This intraspecific covariation pattern found both in the field and in the common garden and not be explained by climatic or edaphic variation in the field follows the expected acquisitive-conservative axis. At the same time, we found quantitative differences in slopes among different species, and between these intraspecific patterns and the interspecific ones. Many of these differences seem to be idiosyncratic, but some appear consistent among species (e.g.all the intraspecific LDMC-SLA and LDMC-Nm slopes tend to be shallower than the global). Conclusions Our study indicates that the acquisitive-conservative leaf functional trait covariation pattern occurs at the intraspecific level even in the absence of relevant environmental variation in the field. This suggests a high degree of variation-covariation in leaf functional traits not driven by environmental variables.

2021 ◽  
Author(s):  
vivek pandi ◽  
Kanda Naveen Babu

Abstract The present study was carried out to analyse the leaf functional traits of co-occurring evergreen and deciduous tree species in a tropical dry scrub forest. This study also intended to check whether the species with contrasting leaf habits differ in their leaf trait plasticity, responding to the canopy-infestation by lianas. A total of 12 leaf functional traits were studied for eight tree species with contrasting leaf habits (evergreen and deciduous) and liana-colonization status (Liana+ and Liana−). In the liana-free environment (L−), evergreen trees had significantly higher specific leaf mass (LMA) and leaf dry matter content (LDMC) than the deciduous species. Whereas, the deciduous trees had higher specific leaf area (SLA) and mass-based leaf nitrogen concentration (Nmass). The leaf trait-pair relationship in the present study agreed to the well-established global trait-pair relationships (SLA Vs Nmass, Lth Vs SLA, Nmass Vs Lth, Nmass Vs LDMC, LDMC Vs SLA). There was no significant difference between L+ and L− individuals in any leaf functional traits studied in the deciduous species. However, evergreen species showed marked differences in the total chlorophyll content (Chlt), chlorophyll b (Chlb), SLA, and LMA between L+ and L− individuals of the same species. Deciduous species with the acquisitive strategy can have a competitive advantage over evergreen species in the exposed environment (L−) whereas, evergreen species with shade-tolerant properties were better acclimated to the shaded environments (L+). The result revealed the patterns of convergence and divergence in some of the leaf functional traits between evergreen and deciduous species. The results also showed the differential impact of liana colonization on the host trees with contrasting leaf habits. Therefore, liana colonization can significantly impact the C-fixation strategies of the host trees by altering their light environment. Further, the magnitude of such impact may vary among species of different leaf habits. The increased proliferation of lianas in the tropical forest canopies may pose a severe threat to the whole forest carbon assimilation rates.


2021 ◽  
Author(s):  
Xinxin Guo ◽  
Xiaoan Zuo ◽  
Ping Yue ◽  
Xiangyun Li ◽  
Ya Hu

Abstract Background and Aims Global changes profoundly impact on structure and function of grassland ecosystem. However, it remains unclear on the mechanism of how multiple limiting resources affect plant community primary productivity (ANPP) in desert steppe.Methods Here, we conducted an experiment to examine the effects of precipitation changes (natural and ± 50% precipitation) and nutrient addition (=N: 0 g·m-2·yr-1; +N: N 10 g·m-2·yr-1; +NPK: N/P/K each for 10 g·m-2·yr-1) on species diversity, ANPP, functional traits and soil properties. We used structural equation model (SEM) to evaluate the effects of precipitation changes and nutrient addition on ANPP.Results Increased precipitation increased species diversity and ANPP under NPK addition, NPK addition increased ANPP under increased precipitation, and the interaction of precipitation changes and nutrient addition was significant for ANPP. Drought reduced plant height and leaf dry matter content (LDMC), but increased leaf nitrogen content (LNC). ANPP was positively correlated with species richness, abundance, height and LDMC, but negatively correlated with specific leaf area (SLA) and LNC. The SEM showed increased precipitation and nutrient addition directly increased ANPP. Altered precipitation indirectly affected ANPP through its effect on abundance and SLA, while nutrient addition indirectly affected ANPP only through its effect on abundance.Conclusion The combined limitations of precipitation and multiple nutrients deserves more attention in studying the effect of global changes on productivity in arid steppe. Our results highlight the importance of species diversity and functional traits in driving short-term responses of ANPP to environmental factors in desert steppe ecosystems.


2021 ◽  
Author(s):  
Jiyou Zhu ◽  
Qing Xu ◽  
Chengyang Xu ◽  
Xinna Zhang

Abstract Background: Functional trait-based ecological research has been instrumental in advancing our understanding of understanding of environmental changes. It is still, however, unclear how the functional traits of urban plants respond to atmospheric particulate pollution, and what trade-off strategies are shown. In order to explore the variation of plant functional traits with urban atmospheric particulate pollution gradient, we divided atmospheric particulate pollution into three levels according to road distance, and measured the variation of six key leaf functional traits and their trade-off strategies. Results: Here, we show that the functional traits of plants can be used as predictors or indicators of the response of plant to urban atmospheric particulate pollution. Within studies, there was a positive correlation between leaf thickness, leaf dry matter content, leaf tissue density, stomata density and leaf dust deposition. While chlorophyll content index and specific leaf area were negatively correlated with the leaf dust deposition. Plants improve the efficiency of gas exchange by optimizing the spatial distribution of stomata of leaves. Dust deposition promotes the regular distribution of stomata. Due to the pressure of atmospheric particles, urban plant shows a trade-off relationship of economics spectrum traits at the leaf level. Taken together, these results indicate that urban atmospheric particulate pollution is the main factor causing the variation of plant functional traits. Conclusion:Under the influence of urban atmospheric particulate matter, plant show a "slow investment-return" type in the global leaf economics spectrum, with lower specific leaf area, lower chlorophyll content, larger leaf thickness, higher leaf dry matter content, higher leaf tissue density and higher stomatal density. This finding provides a new perspective for understanding the resource trades-off strategy of plants adapting to air pollution environment.


2015 ◽  
Vol 12 (18) ◽  
pp. 5339-5352 ◽  
Author(s):  
T.-T. Meng ◽  
H. Wang ◽  
S. P. Harrison ◽  
I. C. Prentice ◽  
J. Ni ◽  
...  

Abstract. Dynamic global vegetation models (DGVMs) typically rely on plant functional types (PFTs), which are assigned distinct environmental tolerances and replace one another progressively along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait variation along gradients is thus driven by PFT replacement. But empirical studies have revealed "universal" scaling relationships (quantitative trait variations with climate that are similar within and between species, PFTs and communities); and continuous, adaptive trait variation has been proposed to replace PFTs as the basis for next-generation DGVMs. Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in China with a view to understanding the relative importance of PFT replacement vs. continuous adaptive variation within PFTs. Leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC) and nitrogen content of dry matter were measured on all species at 80 sites ranging from temperate to tropical climates and from dense forests to deserts. Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were measured at 47 sites. Generalized linear models were used to relate log-transformed trait values to growing-season temperature and moisture indices, with or without PFT identity as a predictor, and to test for differences in trait responses among PFTs. Continuous trait variation was found to be ubiquitous. Responses to moisture availability were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC) of forbs and grasses responded differently from woody plants. SLA and LDMC responses to temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at the warm end of the gradient. Nutrient (N, P and K) responses to climate gradients were generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea and Karea declined with temperature, but Parea increased with temperature. Although the adaptive nature of many of these trait-climate relationships is understood qualitatively, a key challenge for modelling is to predict them quantitatively. Models must take into account that community-level responses to climatic gradients can be influenced by shifts in PFT composition, such as the replacement of deciduous by evergreen trees, which may run either parallel or counter to trait variation within PFTs. The importance of PFT shifts varies among traits, being important for biophysical traits but less so for physiological and chemical traits. Finally, models should take account of the diversity of trait values that is found in all sites and PFTs, representing the "pool" of variation that is locally available for the natural adaptation of ecosystem function to environmental change.


Rodriguésia ◽  
2021 ◽  
Vol 72 ◽  
Author(s):  
Lays Lins ◽  
Juliana Da Silva-Pinheiro ◽  
Ricardo Correia ◽  
Laurício Endres ◽  
Ana Cláudia Mendes Malhado ◽  
...  

Abstract Environmental filtering has been defined as the effect of environmental gradients on species in a plant community and can be the dominant driver of community assembly. Here, we evaluate the relationship between plant communities and the environment in the Restinga vegetation. For this, we measured 11 functional traits of plant species present along transects covering a marked edaphic environmental gradient. This gradient was characterized through Principal Component Analysis of soil characteristics. The relationships between the edaphic gradient and functional traits were evaluated using linear models. Finally, we compared the contributions of species turnover and intraspecific variation to among-site variation in functional traits. The gradients associated with soil nutrients (PCA axis 1) and soil acidity and organic matter (PCA axis 2) were then used to test the observed changes in community composition and were significant predictors of the distribution of water potential, leaf dry matter content and K content, height and chlorophyll index. Decomposing the total variation in the distribution of functional traits between species turnover and intraspecific variation revealed that species turnover explains a greater proportion of the observed variation. We conclude that community assembly is strongly limited by environmental filters and mediated by functional traits at the species level.


2015 ◽  
Vol 12 (9) ◽  
pp. 7093-7124 ◽  
Author(s):  
T.-T. Meng ◽  
H. Wang ◽  
S. P. Harrison ◽  
I. C. Prentice ◽  
J. Ni ◽  
...  

Abstract. Dynamic global vegetation models (DGVMs) typically rely on plant functional types (PFTs), which are assigned distinct environmental tolerances and replace one another progressively along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait variation along gradients is thus driven by PFT replacement. But empirical studies have revealed "universal" scaling relationships (quantitative trait variations with climate that are similar within and between species, PFTs and communities); and continuous, adaptive trait variation has been proposed to replace PFTs as the basis for next-generation DGVMs. Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in China with a view to understanding the relative importance of PFT replacement vs. continuous adaptive variation within PFTs. Leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC) and nitrogen content of dry matter were measured on all species at 80 sites ranging from temperate to tropical climates and from dense forests to deserts. Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were measured at 47 sites. Generalized linear models were used to relate log-transformed trait values to growing-season temperature and moisture indices, with or without PFT identity as a predictor, and to test for differences in trait responses among PFTs. Continuous trait variation was found to be ubiquitous. Responses to moisture availability were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC) of forbs and grasses responded differently from woody plants. SLA and LDMC responses to temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at the warm end of the gradient. Nutrient (N, P and K) responses to climate gradients were generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea and Karea declined with temperature, but Parea increased with temperature. Although the adaptive nature of many of these trait–climate relationships is understood qualitatively, a key challenge for modelling is to predict them quantitatively. Models must also take into account that community-level responses to climatic gradients can be influenced by shifts in PFT composition, such as the replacement of deciduous by evergreen trees, which may run either parallel or counter to trait variation within PFTs. The importance of PFT shifts varies among traits, being important for biophysical traits but less so for physiological and chemical traits.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1079
Author(s):  
Martina Cardoni ◽  
Jesús Mercado-Blanco ◽  
Rafael Villar

Verticillium wilt of olive (VWO), caused by the soil-borne pathogen Verticillium dahliae, is considered one of the most important diseases affecting this tree crop. One of the best VWO management measures is the use of tolerant cultivars. Remarkably, no information is available about olive functional traits and their potential relationship with tolerance to V. dahliae. Twenty-five selected functional traits (for leaf, stem, root and whole plant) were evaluated in six olive varieties differing in their VWO tolerance level to identify possible links between this phenotype and functional traits’ variation. High intervarietal diversity was found among cultivars and several functional traits were related with VWO tolerance. Tolerant varieties showed higher leaf area, dry matter content (leaf, stem and plant) and mass fraction for stems, but lower for leaves. Significant differences were also detected for root functional traits, tolerant cultivars displaying larger fine root diameter and lignin content but smaller specific length and area of thick and fine roots. Correlations were found among functional traits both within varieties and between levels of tolerance/susceptibility to VWO. Associations were observed between biomass allocation, dry matter content and VWO tolerance. The most relevant difference between tolerant and susceptible cultivars was related to root system architecture.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 793
Author(s):  
Yaxiong Zheng ◽  
Fengying Guan ◽  
Shaohui Fan ◽  
Yang Zhou ◽  
Xiong Jing

Functional characteristics reflect plant strategies and adaptability to the changing environment. Determining the dynamics of these characteristics after harvesting would improve the understanding of forest response strategies. Strip clearcutting (SC) of moso bamboo forests, which significantly reduces the cutting cost, has been proposed to replace manual selective harvesting. A comparison of restoration features shows that 8 m is the optimal cutting width. However, the precise response of functional features to the resulting harvest-created gap remains unclear. In this study, three SC plots were selected which was performed in February 2019, with three unharvested plots as a control (C). The study focused on 10 functional traits, including leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), nitrogen/phosphorus ratio (N:P), wood density (WD), fine root biomass (FRB), specific fine root length (SRL), and root length density (RLD). A one-way ANOVA was used to compare differences in functional traits and soil nutrients between treatments. Strip clearcutting significantly reduced the soil organic carbon (SOC) and total nitrogen (TN) contents (p < 0.05). In terms of functional characteristics, SC significantly decreased LA and increased LNC, LPC, and N:P (p < 0.05). However, SC had no significant effect on fine root traits (p > 0.05). This study highlighted that root trait, soil content of total phosphorus (TP) and total potassium (TK) returned to the level of uncut plots after a year’s recovery. The LPC, LNC, and N:P were negatively correlated with LA, and LDMC and WD were negatively correlated with SLA, while the effect of SC on fine root traits was limited (p > 0.05). Fine root traits (FRB, RLD, and SRL) were positively associated with SOC, TN, and TP, but negatively correlated with TK. The changes in soil nutrient content caused by the removal of biomass were normal. Increased light and the rapid growth of new trees will increase nutrient regressions; therefore, these results further confirm the feasibility of SC.


2020 ◽  
Vol 68 (2) ◽  
pp. 100
Author(s):  
Dinesh Thakur ◽  
Lakhbeer Singh ◽  
Amit Chawla

In this study, the effect of temporary storage (at 4°C) on measurement of leaf traits was tested. We collected leaf samples from 25 species, which represented different functional types in the high altitude vegetation of western Himalaya, to measure leaf area (LA), leaf rehydration, specific leaf area (SLA) and leaf dry matter content (LDMC). Repeated trait measurements were performed for up to 7 days. We found that in all the species, LA increased in initial 24 h of rehydration and thereafter remained stable. Leaf rehydration was found to be sensitive to delayed measurements and changed significantly for up to 7 days. For SLA and LDMC, the effect of storage time was significant only for a few species. On the basis of our findings, we recommend that, for samples stored in dark at 4°C, LA, SLA and LDMC can reliably be estimated after a delay of up to 7 days. Further, these key leaf traits should be estimated only after 24 h of rehydration. Also, trait measurements after prolonged rehydration of leaves should be avoided. Outcomes of this study will be beneficial when a large number of samples are collected from locations far away from laboratory and temporary storage is necessitated before trait measurements.


Sign in / Sign up

Export Citation Format

Share Document