scholarly journals Variation in seed traits among Mediterranean oaks in Tunisia and their ecological significance

2020 ◽  
Vol 125 (6) ◽  
pp. 891-904
Author(s):  
Nabil Amimi ◽  
Stéphane Dussert ◽  
Virginie Vaissayre ◽  
Hana Ghouil ◽  
Sylvie Doulbeau ◽  
...  

Abstract Background and Aims Oaks are the foundation and dominant tree species of most Mediterranean forests. As climate models predict dramatic changes in the Mediterranean basin, a better understanding of the ecophysiology of seed persistence and germination in oaks could help define their regeneration niches. Tunisian oaks occupy distinct geographical areas, which differ in their rainfall and temperature regimes, and are thus a valuable model to investigate relationships between seed traits and species ecological requirements. Methods Seed morphological traits, desiccation sensitivity level, lethal freezing temperature, embryonic axis and cotyledon sugar and lipid composition, and seed and acorn germination rates at various constant temperatures were measured in Quercus canariensis, Q. coccifera, Q. ilex and Q. suber, using seeds sampled in 22 Tunisian woodlands. Key Results Only faint differences were observed for desiccation sensitivity in the oak species studied. By contrast, the species differed significantly in sensitivity to freezing, germination rates at low temperature and base temperature. Quercus ilex and Q. canariensis, which occur at high elevations where frost events are frequent, showed the lowest freezing sensitivity. A significant correlation was found between hexose contents in the embryonic axis and freezing tolerance. Significant interspecific differences in the time for seeds to germinate and the time for the radicle to pierce the pericarp were observed. The ratio of pericarp mass to acorn mass differed significantly among the species and was negatively correlated with the acorn germination rate. Quercus coccifera, which is frequent in warm and arid environments, showed the highest acorn germination rate and synchrony. Conclusions Seed lethal temperature, seed germination time at low temperatures, the ratio of pericarp mass to acorn mass and the embryonic axis hexose content appeared to be key functional traits that may influence the geographical ranges and ecological requirements of Mediterranean oaks in Tunisia.

2019 ◽  
Vol 58 (4) ◽  
pp. 887-902 ◽  
Author(s):  
Zhiguo Yue ◽  
Daniel Rosenfeld ◽  
Guihua Liu ◽  
Jin Dai ◽  
Xing Yu ◽  
...  

AbstractThe advent of the Visible Infrared Imager Radiometer Suite (VIIRS) on board the Suomi NPP (SNPP) satellite made it possible to retrieve a new class of convective cloud properties and the aerosols that they ingest. An automated mapping system of retrieval of some properties of convective cloud fields over large areas at the scale of satellite coverage was developed and is presented here. The system is named Automated Mapping of Convective Clouds (AMCC). The input is level-1 VIIRS data and meteorological gridded data. AMCC identifies the cloudy pixels of convective elements; retrieves for each pixel its temperature T and cloud drop effective radius re; calculates cloud-base temperature Tb based on the warmest cloudy pixels; calculates cloud-base height Hb and pressure Pb based on Tb and meteorological data; calculates cloud-base updraft Wb based on Hb; calculates cloud-base adiabatic cloud drop concentrations Nd,a based on the T–re relationship, Tb, and Pb; calculates cloud-base maximum vapor supersaturation S based on Nd,a and Wb; and defines Nd,a/1.3 as the cloud condensation nuclei (CCN) concentration NCCN at that S. The results are gridded 36 km × 36 km data points at nadir, which are sufficiently large to capture the properties of a field of convective clouds and also sufficiently small to capture aerosol and dynamic perturbations at this scale, such as urban and land-use features. The results of AMCC are instrumental in observing spatial covariability in clouds and CCN properties and for obtaining insights from such observations for natural and man-made causes. AMCC-generated maps are also useful for applications from numerical weather forecasting to climate models.


Author(s):  
Rong Li ◽  
Dandan Min ◽  
Lijun Chen ◽  
Chunyang Chen ◽  
Xiaowen Hu

This study determined the effects of priming on germination in response to temperature, water potential and NaCl. Thermal and hydrotime models were utilized to evaluate changes in parameters of the model after priming. Priming reduced the amount of thermal time in both cultivars, but slightly increased the base temperature for germination from 1.0 to 3.5°C in “Longdong”. Priming significantly increased germination rate at high water potential but had no effect at low water potential. Further, priming reduced the hydrotime constant but made the median base water potential value slightly more positive in both cultivars. Thus, priming increased germination rate in water but decrease it under severe water stress. Germination rate was significantly increased in both cultivars under salinity (NaCl) stress. Moreover, priming improved seedling growth in response to temperature, water and salinity stress in both cultivars.


1991 ◽  
Vol 69 (7) ◽  
pp. 1463-1470 ◽  
Author(s):  
L. A. Hermanutz ◽  
S. E. Weaver

The colonization potential of the northwardly migrating weed Solanum ptycanthum was evaluated by comparing germination profiles of southern agrestal populations with northern marginal populations sampled from both ruderal and agrestal habitats. Under laboratory conditions, the seed from five maternal families from each population was subjected to six light:dark temperature regimes from 18:8 to 40:30 °C and germination rate (time to 50% germination) and final percent germination were monitored. The base temperature and thermal time (degree-days) required for 50% germination were calculated. Seeds from southern agrestal populations germinated over a broader temperature range than northern agrestal populations but had similar rates of germination, base temperatures, and thermal times. At the northern range limit, ruderal populations germinated faster and had smaller thermal times than agrestal populations but had similar base temperatures. Delayed emergence in agrestal habitats may be a response to cultural practices. Seeds from northern populations were heavier than southern populations. Plasticity of germination response to temperature did not differ between populations. The observed levels of genetic variability in all germination parameters suggest that future range expansion would be possible. Key words: temperature-dependent germination, agrestal, ruderal, marginal populations, genetic variability, plasticity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lifeng Zhou ◽  
Hongwei Yu ◽  
Kaiwen Yang ◽  
Li Chen ◽  
Wandong Yin ◽  
...  

Invasive plants may change their seed traits to adapt to the environment and facilitate their performance. Studies on variation in seed traits among populations of an invader along latitudes/longitudes may assist in revealing how invasive plants cope with variable climates. In this study, we collected seeds of 26 populations of the global invasive plant Ambrosia artemisiifolia along ranges spanning 23° latitudes and 20° longitudes that are highly correlated in its invasive range in China. We measured over 20 seed traits, including seed morphology, phytohormone, nutrients, and germination, and investigated how the climate along the latitudes affects those traits. We found that germination time was significantly delayed with increasing latitude and longitude, while the reversed patterns were true for the germination rate. From low to high latitude, seed size, abscisic acid, and fatty acid were increased, likely affecting seed germination. Our analysis further demonstrated that temperature is the dominant driver of the variability in seed traits and germination. Germination rates of larger seeds in cold ranges were lower, while smaller seeds from warm ranges germinated faster, likely indicating adaptive strategies of the invasive plant in seed trait functional ecology. Together, our findings provide new insights into understanding the seed adaptation strategies during the invasion process and the underlying physiological and biochemical mechanisms involved.


2008 ◽  
Vol 18 (3-4) ◽  
pp. 171 ◽  
Author(s):  
P. PELTONEN-SAINIO ◽  
L. JAUHIAINEN ◽  
K. HAKALA

Climate change offers new opportunities for Finnish field crop production, which is currently limited by the short growing season. A warmer climate will extend the thermal growing season and the physiologically effective part of it. Winters will also become milder, enabling introduction of winter-sown crops to a greater extent than is possible today. With this study we aim to characterise the likely regional differences in capacity to grow different seed producing crops. Prolongation of the Finnish growing season was estimated using a 0.5º latitude × 0.5º longitude gridded dataset from the Finnish Meteorological Institute. The dataset comprised an average estimate from 19 global climate models of the response of Finnish climate to low (B1) and high (A2) scenarios of greenhouse gas and aerosol emissions for 30-year periods centred on 2025, 2055 and 2085 (Intergovernmental Panel on Climate Change). Growing season temperature sums that suit crop growth and are agronomically feasible in Finland are anticipated to increase by some 140 °Cd by 2025, 300 °Cd by 2055 and 470 °Cd by 2085 in scenario A2, when averaged over regions, and earlier sowing is expected to take place, but not later harvests. Accordingly, the extent of cultivable areas for the commonly grown major and minor crops will increase considerably. Due to the higher base temperature requirement for maize (Zea mays L.) growth than for temperate crops, we estimate that silage maize could become a Finnish field crop for the most favourable growing regions only at the end of this century. Winters are getting milder, but it will take almost the whole century until winters such as those that are typical for southern Sweden and Denmark are experienced on a wide scale in Finland. It is possible that introduction of winter-sown crops (cereals and rapeseed) will represent major risks due to fluctuating winter conditions, and this could delay their adaptation for many decades. Such risks need to be studied in more detail to estimate timing of introduction. Prolonged physiologically effective growing seasons would increase yielding capacities of major field crops. Of the current minor crops, oilseed rape (Brassica napus L.), winter wheat (Triticum aestivum L.), triticale (X Triticosecale Wittmack), pea (Pisum sativum L.) and faba bean (Vicia faba L.) are particularly strong candidates to become major crops. Moreover, they have good potential for industrial processing and are currently being bred. Realisation of increased yield potential requires adaptation to 1) elevated daily mean temperatures that interfere with development rate of seed crops under long days, 2) relative reductions in water availability at critical phases of yield determination, 3) greater pest and disease pressure, 4) other uncertainties caused by weather extremes and 5) generally greater need for inputs such as nitrogen fertilisers for non-nitrogen fixing crops.;


Weed Science ◽  
1997 ◽  
Vol 45 (4) ◽  
pp. 488-496 ◽  
Author(s):  
Joseph O. E. Oryokot ◽  
Stephen D. Murphy ◽  
A. Gordon Thomas ◽  
Clarence J. Swanton

To predict weed emergence and help farmers make weed management decisions, we constructed a mathematical model of seed germination for green and redroot pigweed based on temperature and water potential (moisture) and expressing cumulative germination in terms of thermal time (degree days). Empirical observations indicated green pigweed germinated at a lower base temperature than redroot pigweed but the germination rate of redroot pigweed is much faster as mean temperature increases. Moisture limitation delayed seed germination until 23.8 C (green pigweed) or 27.9 (redroot pigweed); thereafter, germination was independent of water potential as mean temperatures approached germination optima. Our germination model, based on a cumulative normal distribution function, accounted for 80 to 95% of the variation in seed germination and accurately predicted that redroot pigweed would have a faster germination rate than green pigweed. However, the model predicted that redroot pigweed would germinate before green pigweed (in thermal time) and was generally less accurate during the early period of seed germination. The model also predicted that moisture limitation would increase, rather than delay, seed germination. These errors were related to the mathematical function chosen and analyses used, but an explicit interaction term for water potential and temperature is also needed to produce an accurate model. We also tested the effect of mean temperature on shoot elongation (emergence) and described the relationship by a linear model. Base temperatures for shoot elongation were higher than for seed germination. Shoot elongation began at 15.6 and 14.4 C for green and redroot pigweed, respectively; they increased linearly with temperature until the optimum of 27.9 C was reached. Elongation was dependent on completion of the rate-limiting step of radicle emergence and was sensitive to temperature but not moisture; hence, elongation was sensitive to a much smaller temperature range. Beyond mathematical changes, we are testing our model in the field and need to link it to ecophysiological, genetic, and spatially explicit population processes for it to be useful in decision support for weed management.


1992 ◽  
Vol 2 (1) ◽  
pp. 17-22 ◽  
Author(s):  
W. E. Finch-Savage

AbstractChanges in germination and desiccation sensitivity were measured throughout the seed expansion phase of development in fruits of Quercus robur L. The onset of a reduction in sensitivity to desiccation during development on the tree coincided with acquisition of the capacity for seed germination on moist sand substrate. Tolerance of desiccation then increased throughout development to shedding, but viability was still lost at a relatively high moisture content, and seeds did not therefore pass through a fully desiccation-tolerant phase. These data suggest that desiccation sensitivity in Q. robur may have resulted from the premature termination of development.No desiccation was required to initiate germination in prematurely harvested fruits orseeds. Germination rate of seeds on moist sand increased at successive harvests during development, and was also increased by presoaking seeds in water. Variation in germination rate following shedding was not related to seed size or moisture content, but was affected by shedding date. This effect was not observed when the pericarp was removed.


2013 ◽  
Vol 5 (4) ◽  
pp. 462-467 ◽  
Author(s):  
Sajad MIJANI ◽  
Samieh ESKANDARI NASRABADI ◽  
Hadi ZARGHANI ◽  
Mohhamad GHIAS ABADI

The objectives of this survey were to determine the effect of temperature on germination and seedling growth of Hyssop (Hyssopus officinalis L.), Sweet basil (Ocimum basilicum L.) and Oregano (Origanum vulgare L.) (Lamiaceae family) as well as comparing species regarding germination behavior and growth characteristics. Seeds were germinated on a temperature-gradient bar varying between 5 and 40 °C (with 5 °C intervals). Results indicated that the highest germination percentage of hyssop (92-98%), sweet basil (86-90%) and oregano (74-77%) occurred at 20-30 °C, 25-30 °C and 20-30 °C, respectively; therefore, moderate and warm temperatures are proper for germination of all species. In all species the maximum germination rate obtained at 30 °C. Among all species, Day 10 % of Sweet basil Germination had the lowest value, which indicates faster germination. The cardinal temperatures (base, optimum and ceiling or maximum) were estimated by the segmented model. Base temperature (Tb) was calculated for hyssop, sweet basil and oregano as 3.42, 5.70 and 5.46 °C, respectively. Optimal temperature (To) calculated for all species was approximately 30°C, So warmer temperatures are much more proper for them. The species showed different maximum temperatures (Tm) from 42.91 (Oregano) to 48.05 °C (Hyssop). In Hyssop and Sweet basil optimum growth of seedlings were observed at 30°C while Oregano reached its best growth at 25°C. The difference between maximum and minimum temperatures of germination knowing as temperature range (TR) index could show adaptation capability to broad sites for planting and domestication. Regarding this index Hyssop stood in the first place.


2013 ◽  
Vol 93 (5) ◽  
pp. 793-798 ◽  
Author(s):  
M. P. Schellenberg ◽  
B. Biligetu ◽  
Y. Wei

Schellenberg, M. P., Biligetu, B. and Wei, Y. 2013. Predicting seed germination of slender wheatgrass [Elymus trachycaulus (Link) Gould subsp. trachycaulus] using thermal and hydro time models. Can. J. Plant Sci. 93: 793–798. Slender wheatgrass [Elymus trachycaulus (Link) Gould subsp. trachycaulus] is a native caespitose grass used for forage production and reclamation. The objective of this study was to quantify seed germination requirements of slender wheatgrass using thermal and hydro time models. Slender wheatgrass, San Luis, had a base temperature (Tb) of 9.48°C, and required 946.8°C h to reach 50% of seed germination. Seed germination of San Lius occurred at a temperature range of 10–30°C, with the highest germination rate being achieved at 20°C, and the highest final germination percentage being achieved at 25°C. At 20 and 25°C, San Luis had a hydro time constant of 61 MPa h, and a median base water potential of approximately 1.0 MPa, but the germination had low uniformity in reduced water potentials. Final germination was reduced at or lower than –0.6 MPa. Compared with many other cool-season native grasses of Northern Great Plains, a relatively warm temperature would be necessary for uniform seedling establishment of this grass. In reclamation seeding, the seedling emergence could reach the highest level at a temperature of 25°C.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 386
Author(s):  
Marine Saux ◽  
Benoît Bleys ◽  
Thierry André ◽  
Christophe Bailly ◽  
Hayat El-Maarouf-Bouteau

Seed vigor is an important trait that determines seed performance in the field, which corresponds to seed germination rate and seedling establishment. Previous works brought helpful equations to calculate several parameters allowing vigor characterization. In this work we used base water potential (Ψb), base temperature (Tb) and seed lot (Ki) constants to characterize the vigor of 44 sunflower seed lots. Contrasting responses to water or temperature stress and storage potential were recorded within this population, the most interesting being the opposite responses between Ψb and Ki. The genotypes that were resistant to water stress presented low ability for storage and vice versa. Furthermore, Ψb and Ki presented narrow ranges while Tb showed important variability within the 44 genotypes. The analysis of the whole dataset showed that these constants are not correlated to each other or to the seed size, suggesting that genetic background is the most important determining factor in seed performance. Consequently, vigor characterization of genotypes is needed in the crop selection process in order to optimize agricultural productivity.


Sign in / Sign up

Export Citation Format

Share Document