Predicting seed germination of slender wheatgrass [Elymus trachycaulus (Link) Gould subsp. trachycaulus] using thermal and hydro time models

2013 ◽  
Vol 93 (5) ◽  
pp. 793-798 ◽  
Author(s):  
M. P. Schellenberg ◽  
B. Biligetu ◽  
Y. Wei

Schellenberg, M. P., Biligetu, B. and Wei, Y. 2013. Predicting seed germination of slender wheatgrass [Elymus trachycaulus (Link) Gould subsp. trachycaulus] using thermal and hydro time models. Can. J. Plant Sci. 93: 793–798. Slender wheatgrass [Elymus trachycaulus (Link) Gould subsp. trachycaulus] is a native caespitose grass used for forage production and reclamation. The objective of this study was to quantify seed germination requirements of slender wheatgrass using thermal and hydro time models. Slender wheatgrass, San Luis, had a base temperature (Tb) of 9.48°C, and required 946.8°C h to reach 50% of seed germination. Seed germination of San Lius occurred at a temperature range of 10–30°C, with the highest germination rate being achieved at 20°C, and the highest final germination percentage being achieved at 25°C. At 20 and 25°C, San Luis had a hydro time constant of 61 MPa h, and a median base water potential of approximately 1.0 MPa, but the germination had low uniformity in reduced water potentials. Final germination was reduced at or lower than –0.6 MPa. Compared with many other cool-season native grasses of Northern Great Plains, a relatively warm temperature would be necessary for uniform seedling establishment of this grass. In reclamation seeding, the seedling emergence could reach the highest level at a temperature of 25°C.

2013 ◽  
Vol 31 (4) ◽  
pp. 823-832 ◽  
Author(s):  
A. Derakhshan ◽  
J. Gherekhloo

Specific knowledge about the dormancy, germination, and emergence patterns of weed species aids the development of integrated management strategies. Laboratory studies were conducted to determine the effect of several environmental factors on seed germination and seedling emergence of Cyperus difformis. Germination of freshly harvested seeds was inhibited by darkness; however, when seeds were subsequently transferred to complete light they germinated readily. Our results showed that 2 wk of cold stratification overcome the light requirement for germination. Seeds of C. difformis were able to germinate over a broad range of temperatures (25/15, 30/20, 35/25, and 40/30 ºC day/night). The response of germination rate to temperature was described as a non-linear function. Based on model outputs, the base, the optimum and the ceiling temperatures were estimated as 14.81, 37.72 and 45 ºC, respectively. A temperature of 120 ºC for a 5 min was required to inhibit 50% of maximum germination. The osmotic potential and salinity required for 50% inhibition of maximum germination were -0.47 MPa and 135.57 mM, respectively. High percentage of seed germination (89%) was observed at pH=6 and decreased to 12% at alkaline medium (pH 9) pH. Seeds sown on the soil surface gave the greatest percentage of seedling emergence, and no seedlings emerged from seeds buried in soil at depths of 1 cm.


Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Ning Zhao ◽  
Qi Li ◽  
Wenlei Guo ◽  
Lele Zhang ◽  
Lu’an Ge ◽  
...  

Shortawn foxtail is an invasive grass weed infesting winter wheat and canola production in China. A better understanding of the germination ecology of shortawn foxtail would help to develop better control strategies for this weed. Experiments were conducted under laboratory conditions to evaluate the effects of various abiotic factors, including temperature, light, pH, osmotic stress, salt concentration, and planting depth, on seed germination and seedling emergence of shortawn foxtail. The results showed that the seed germination rate was greater than 90% over a wide range of constant (5 to 25C) and alternating (15/5 to 35/25C) temperatures. Maximum germination occurred at 20C or 25/15C, and no germination occurred at 35C. Light did not appear to have any effect on seed germination. Shortawn foxtail germination was 27% to 99% over a pH range of 4 to 10, and higher germination was obtained at alkaline pH values ranging from 7 to 10. Seed germination was sensitive to osmotic potential and completely inhibited at an osmotic potential of −0.6 MPa, but it was tolerant to salinity: germination even occurred at 200 mM NaCl (5%). Seedling emergence was highest (98%) when seeds were placed on the soil surface but declined with the increasing burial depth. No seedlings emerged when seeds were buried 6-cm deep. Deep tillage could be an effective measure to limit seed germination from increased burial depth. The results of this study will lead to a better understanding of the requirements for shortawn foxtail germination and emergence and will provide information that could contribute to its control.


2015 ◽  
Vol 43 (1) ◽  
pp. 153-158 ◽  
Author(s):  
Faruk TOKLU

An experiment was conducted under laboratory and field conditions in order to evaluate the effects of different priming treatments, specifically KNO3 (1%), KCl (2%), KH2PO4 (1%), ZnSO4 (0.05%), PEG-6000 (20%), IBA (100 ppm), Mannitol (4%), GA3 (100 ppm) and distilled water, on seed germination properties and several agro-morphological plant characteristics of red lentil. Seeds not primed were used as a control. GA3 treatment increased shoot length. The control (non-primed seeds) treatment resulted in increased seedling root number and length. Distilled water, ZnSO4 and control treatments increased germination rate and percentage. In the pot experiments, GA3 treatment increased plant height and seedling emergence rate, whereas KCl treatment improved the number of nodules, as well as root and shoot dry weight when compared to the control. ZnSO4 treatment increased yield components and grain yield in field conditions. The results of this study showed that ZnSO4, GA3 and PEG-6000 seed priming treatments may be useful tools due to their positive effects on germination rate, germination percentage, yield component and grain yield of lentil.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 190
Author(s):  
Lei Chu ◽  
Yiping Gao ◽  
Lingling Chen ◽  
Patrick E. McCullough ◽  
David Jespersen ◽  
...  

White clover (Trifolium repens L.) is cultivated as a forage crop and planted in various landscapes for soil conservation. There are numerous reports of failed white clover stands each year. A good understanding of the seed germination biology of white clover in relation to environmental factors is essential to achieve successful stand establishment. A series of experiments were conducted to investigate the impacts of light, temperature, planting depth, drought, and salt stress on seed germination and the emergence of white clover. White clover is negatively photoblastic, and seed germination averaged 63 and 66% under light and complete dark conditions 4 weeks after planting (WAP), respectively. Temperature affected the seed germination speed and rate. At 1 WAP, seeds incubated at 15 to 25 °C demonstrated a significantly higher germination rate than the low temperatures at 5 and 10 °C; however, the germination rate did not differ among the temperature treatments at 4 WAP. The results suggest that white clover germination decreases with increasing sowing depths, and the seeds should be sown on the soil surface or shallowly buried at a depth ≤1 cm to achieve an optimal emergence. White clover seeds exhibited high sensitivity to drought and salinity stress. The osmotic potential and NaCl concentration required to inhibit 50% seed germination were −0.19 MPa and 62.4 mM, respectively. Overall, these findings provide quantifiable explanations for inconsistent establishment observed in field conditions. The results obtained in this research can be used to develop effective planting strategies and support the successful establishment of white clover stands.


1993 ◽  
Vol 73 (4) ◽  
pp. 765-778 ◽  
Author(s):  
W. D. Willms ◽  
P. G. Jefferson

The mixed prairie represents the most arid region of the Northern Great Plains in Canada. Approximately 6.5 M ha of the original total of 24 M ha have retained their native character. The native prairie supports about 5.3 M animal–unit–months or about 15% of all beef cattle present on the Canadian prairies. A large portion of the area is dominated by either needle-and-thread (Stipa comata Trin. + Rupr.) or western wheatgrass (Agropyron smithii Rydb.), both cool season grasses, and associated with blue grama [Bouteloua gracilis (H.B.K.) Lag. ex Steud.] a warm season grass. These species define the major plant communities of the mixed prairie and determine their production potential. However, their production is limited by available water during the growing season and by soil nutrients; factors which also influence their species composition. Grazing imposes a significant impact on the grasslands by altering the water and nutrient cycles, through defoliation and reduced plant litter, and eventually by affecting the species composition. Removing litter may reduce forage production by up to 60% and repeated defoliation will favour the more drought tolerant but less productive species. Forage production may be increased by seeding introduced species, which have a greater shoot to root ratio than native grasses, or with fertilizer application. Livestock production may be increased with the use of grazing systems. However, the benefits of each practice on the mixed prairie must be assessed in terms of their cost, their impact on the environment, and the reduced or lost value for other users. Key words: Biomass, above-ground, below-ground, water-use efficiency, reseeding, soil fertility, grazing efficiency


2005 ◽  
Vol 45 (4) ◽  
pp. 391 ◽  
Author(s):  
B. Zhang ◽  
B. C. Jacobs ◽  
M. O'Donnell ◽  
J. Guo

Salt tolerances of 3 cultivars, Menemen puccinellia (Puccinellia ciliata Bor), Tyrrell and Dundas [tall wheatgrass, Thinopyrum ponticum (Podp.) Z. W. Liu and R. R. C. Wang], were compared with respect to their seed germination, adaptive responses to salt and waterlogging, seedling emergence, plant growth, shoot osmolality and mineral contents in a series of salt-stress experiments. An inverse normal distribution provided good fits for the time to seed germination. Under NaCl stress, 50% of the control (distilled water) seed germination rates of Menemen, Tyrrell and Dundas were achieved in 178.8, 300.9 and 296.8 mmol/L NaCl, respectively. Fifty percent of the control seedling emergence rates of these 3 cultivars were in 92.7, 107.2 and 113.5 mmol/L NaCl, respectively. The seed germination rates of these 3 cultivars under both salt and waterlogging stress were far lower than those germinated only under salt stress at the same salt level. Seed pretreatment by soaking seed in NaCl solutions greatly increased the seed germination rate under salt stress for Menemen and under both salt stress and waterlogging for Dundas. Tyrrell and Dundas were very similar in their tolerance to salt stress, and were significantly (P<0.05) more salt tolerant than Menemen in terms of seed germination and seedling emergence rate. Both shoot height and dry matter of these 3 cultivars were not statistically different among all salt stress levels during the seedling elongation period, indicating that the established plants of these 3 cultivars were very salt tolerant. The salt tolerance mechanisms of these 3 cultivars are possibly related to their abilities to maintain high osmolality in shoots by regulating high sodium and potassium contents, and reducing calcium deficiency under salt stress.


2013 ◽  
Vol 6 (3) ◽  
pp. 371-380 ◽  
Author(s):  
Rachel N. Brownsey ◽  
Guy B. Kyser ◽  
Joseph M. DiTomaso

AbstractUnderstanding seed characteristics and seedling establishment patterns is essential for the development of effective management strategies for invasive annual species.Dittrichia graveolens(stinkwort) has increased its range rapidly within California since 1995, yet its biology is not well understood, which has led to poorly timed management. In this study, seed viability, germination, longevity, and dormancy, as well as seedling emergence characteristics ofD. graveolenswere evaluated in field, greenhouse, and laboratory experiments in Davis, CA, over a 2-yr period (fall 2010 to summer 2012). In the laboratory, seed germination ofD. graveolensoccurred at a wide range of constant temperatures (12 to 34 C). Cumulative germination was comparable to total seed viability (80 to 95%) at optimal germination temperatures, indicating that primary (innate) dormancy is likely absent. The base temperature for germination was identified using a thermal time model: 6.5 C and 4 C for 2010 and 2011 seed populations, respectively. In the field, seedlings emerged from fall through spring following precipitation events. A very low percentage of seedlings (2.5%) emerged in the second year after planting. Equivalent seedling emergence was observed over a wide range of light conditions (100, 50, 27, and 9% of available sunlight) in a greenhouse experiment, indicating that seed germination is not limited by high or low light. Results from these seed experiments improve our understanding of the reproductive biology of this rapidly expanding exotic annual and provide valuable information for developing effective timing and longevity of management programs.


Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 172-181 ◽  
Author(s):  
Kristin M. Hacault ◽  
Rene C. Van Acker

In the northern region of the northern Great Plains of North America, the relative abundance of dandelion in field crops has increased over the past two decades, and farmers need information to help them to better manage this species and slow its spread. A study was conducted to determine the emergence timing of dandelion from both rootstock and seed, and to investigate the efficacy of preseeding (spring) versus postharvest (autumn) herbicide treatments on dandelion in spring wheat fields. Emergence of dandelion plants from rootstock was very early (mean time to 50% emergence [E50] of 430 growing degree days [GDD] Tbase0 C), while seedling emergence was much later (mean E50of 980 GDD). Dandelion does not have a persistent seed bank, and seedling emergence occurred only after dandelion plants arising from rootstock flowered and shed seed. Herbicide treatments that included glyphosate plus florasulam, glyphosate plus tribenuron, or higher rates of glyphosate alone (≥675 g ae ha−1), provided high levels of dandelion control. Autumn herbicide applications were more effective than spring applications for reducing dandelion infestation levels (both aboveground biomass and density). Autumn herbicide applications came after peak emergence timing for dandelion plants emerging both from rootstock and from seed. Because dandelion is a simple perennial, population spread must be limited by controlling seedlings. Autumn herbicide applications provide control of dandelion seedlings and therefore, should limit dandelion population spread.


2017 ◽  
Vol 32 (2) ◽  
pp. 211-220 ◽  
Author(s):  
Hengzhi Wang ◽  
Yizhao Huang ◽  
Lele Zhang ◽  
Weitang Liu ◽  
Jinxin Wang

AbstractLittle information is published related to seed germination and seedling emergence of Japanese foxtail, a troublesome annual grass weed widely distributed in winter wheat fields in China. Three Japanese foxtail populations were studied under laboratory and greenhouse conditions, to determine the effects of different environmental factors on seed germination or seedling emergence. Chemical control is absolutely necessary in integrated management, and efficacy of POST herbicides against different growth stages of Japanese foxtail was evaluated. Germination rate was 90% or more when temperature ranged from 5 to 25 C, with germination onset shortened as temperature increased. Light was not required for germination to occur. For pH values ranging from 5 to10 there was no effect on seed germination. Japanese foxtail seed germination was sensitive to osmotic stress and completely inhibited at an osmotic potential of -1.1 MPa. The ‘1513’ population of Japanese foxtail demonstrated tolerance to soil salinity, with 98% germination at 80 mM NaCl compared with 25 and 40% germination for populations ‘1532’ and ‘1544’, respectively. High amounts of crop residue (10 t ha−1) suppressed Japanese foxtail emergence 38 to 55%. Germination of seeds placed at 160 C for 5 min was completely inhibited for dry seeds, with a similar effect at 130 C for pre-soaked seeds. Seed burial in the soil from 0 to 4 cm had no effect on seedling emergence, but burial at 7 cm completely inhibited seedling emergence. POST herbicides mesosulfuron-methyl (13.5 g ai ha−1), clodinafop-propargyl (67.5 g ai ha−1), pyroxsulam (13.5 g ai ha−1), pinoxaden (67.5 g ai ha−1) and isoproturon (1125 g ai ha−1) reduced plant dry weight 80% or more when applied at three- to seven-leaf stage, but control declined with application at later growth stages. The information from this study helps to develop an integrated approach to Japanese foxtail management.


2002 ◽  
Vol 82 (1) ◽  
pp. 67-74
Author(s):  
A. J. Leyshon ◽  
P. G. Jefferson ◽  
J. Waddington

Widely seeded rows (>60 cm) of perennial grasses have exhibited greater long-term yield stability, but allow weed invasion in the first years after establishment. A 9-yr study was conducted at a semiarid site at Swift Current, Saskatchewan, Canada, to determine the effects of intercropping oats (Avena sativa L.) and slender wheatgrass [Elymus trachycaulus (Link) Gould ex Shinners] between rows of Russian wildrye [Psathyrostachys juncea (Fisch.) Nevski], and Altai wildrye [Leymus angustus (Trin) Pilger] seeded in 90-cm spacings either alone or in alternate rows with alfalfa (Medicago sativa L.). Two rows of oats depressed grass forage production in the year following establishment. Slender wheatgrass intercrops reduced grass forage yield and alfalfa forage yield. However, slender wheatgrass contributed to increased total forage yields while it persisted in the mixture. By the fifth year, it had disappeared from the Russian wildrye plots but persisted 2 more years when intercropped with Altai wildrye. Interseeded companion crops, either annual or short-lived perennials, for forage will give short-term yield gains, but long-lived perennial forages may not recover from the competition in the long-term. Key words: Avena sativa, Elymus trachycaulus, Psathyrostachys juncea, Leymus angustus, Medicago sativa, forage yield


Sign in / Sign up

Export Citation Format

Share Document