Lemon myrtle extract inhibits lactate production by Streptococcus mutans

2021 ◽  
Vol 85 (10) ◽  
pp. 2185-2190
Author(s):  
Yukinori Yabuta ◽  
Yui Sato ◽  
Arisu Miki ◽  
Ryuta Nagata ◽  
Tomohiro Bito ◽  
...  

ABSTRACT Backhousia citriodora (lemon myrtle) extract has been found to inhibit glucansucrase activity, which plays an important role in biofilm formation by Streptococcus mutans. In addition to glucansucrase, various virulence factors in S. mutans are involved in the initiation of caries. Lactate produced by S. mutans demineralizes the tooth enamel. This study investigated whether lemon myrtle extract can inhibit S. mutans lactate production. Lemon myrtle extract reduced the glycolytic pH drop in S. mutans culture and inhibited lactate production by at least 46%. Ellagic acid, quercetin, hesperetin, and myricetin, major polyphenols in lemon myrtle, reduced the glycolytic pH drop and lactate production, but not lactate dehydrogenase activity. Furthermore, these polyphenols reduced the viable S. mutans cell count. Thus, lemon myrtle extracts may inhibit S. mutans-mediated acidification of the oral cavity, thereby preventing dental caries and tooth decay.

2019 ◽  
Vol 14 (5) ◽  
pp. 1934578X1984933
Author(s):  
Joshua L. Mieher ◽  
Norbert Schormann ◽  
Manisha Patel ◽  
Hui Wu ◽  
Champion Deivanayagam

Dental caries characterized by acid damage of tooth enamel is a persistent disease that begins with the formation of biofilms on the tooth surface. The secreted glucosyltransferases enable Streptococcus mutans to synthesize extracellular glucan polymers using ingested starch within the oral cavity, which eventually results in the production of acid, a contributing factor to cariogenesis. In this paper, we report the cloning, expression, purification, crystallization, and preliminary X-ray diffraction characterization of glucosyltransferase B.


2017 ◽  
Vol 199 (8) ◽  
Author(s):  
Manoharan Shankar ◽  
Mohammad S. Hossain ◽  
Indranil Biswas

ABSTRACT Streptococcus mutans, an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV (streptococcal pleiotropic regulator of virulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans. Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology. IMPORTANCE Streptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are critical for successful disease establishment. Sometimes these regulators, which are potential targets for antimicrobials, are lost in the genomic context due to the lack of annotated homologs. This work outlines the regulatory impact of a small, highly conserved hypothetical protein, SprV, encoded by S. mutans. We show that SprV affects the transcript levels of various virulence factors required for normal growth, biofilm formation, stress tolerance, genetic competence, and bacteriocin production.


2018 ◽  
Vol 6 (3) ◽  
pp. 38 ◽  
Author(s):  
Amy Melok ◽  
Lee Lee ◽  
Siti Mohamed Yussof ◽  
Tinchun Chu

Streptococcus mutans (S. mutans) is the main etiological bacteria present in the oral cavity that leads to dental caries. All of the S. mutans in the oral cavity form biofilms that adhere to the surfaces of teeth. Dental caries are infections facilitated by the development of biofilm. An esterified derivative of epigallocatechin-3-gallate (EGCG), epigallocatechin-3-gallate-stearate (EGCG-S), was used in this study to assess its ability to inhibit the growth and biofilm formation of S. mutans. The effect of EGCG-S on bacterial growth was evaluated with colony forming units (CFU) and log reduction; biofilm formation was qualitatively determined by Congo red assay, and quantitatively determined by crystal violet assay, fluorescence-based LIVE/DEAD assays to study the cell viability, and scanning electron microscopy (SEM) was used to evaluate the morphological changes. The results indicated that EGCG-S was able to completely inhibit growth and biofilm formation at concentrations of 250 µg/mL. Its effectiveness was also compared with a commonly prescribed mouthwash in the United States, chlorhexidine gluconate. EGCG-S was shown to be equally effective in reducing S. mutans growth as chlorhexidine gluconate. In conclusion, EGCG-S is potentially an anticariogenic agent by reducing bacterial presence in the oral cavity.


2019 ◽  
Vol 202 (6) ◽  
Author(s):  
Andrew P. Bischer ◽  
Christopher J. Kovacs ◽  
Roberta C. Faustoferri ◽  
Robert G. Quivey

ABSTRACT The rhamnose-glucose cell wall polysaccharide (RGP) of Streptococcus mutans plays a significant role in cell division, virulence, and stress protection. Prior studies examined function of the RGP using strains carrying deletions in the machinery involved in RGP assembly. In this study, we explored loss of the substrate for RGP, l-rhamnose, via deletion of rmlD (encoding the protein responsible for the terminal step in l-rhamnose biosynthesis). We demonstrate that loss of rhamnose biosynthesis causes a phenotype similar to strains with disrupted RGP assembly (ΔrgpG and ΔrgpF strains). Deletion of rmlD not only caused a severe growth defect under nonstress growth conditions but also elevated susceptibility of the strain to acid and oxidative stress, common conditions found in the oral cavity. A genetic complement of the ΔrmlD strain completely restored wild-type levels of growth, whereas addition of exogenous rhamnose did not. The loss of rhamnose production also significantly disrupted biofilm formation, an important aspect of S. mutans growth in the oral cavity. Further, we demonstrate that loss of either rmlD or rgpG results in ablation of rhamnose content in the S. mutans cell wall. Taken together, these results highlight the importance of rhamnose production in both the fitness and the ability of S. mutans to overcome environmental stresses. IMPORTANCE Streptococcus mutans is a pathogenic bacterium that is the primary etiologic agent of dental caries, a disease that affects billions yearly. Rhamnose biosynthesis is conserved not only in streptococcal species but in other Gram-positive, as well as Gram-negative, organisms. This study highlights the importance of rhamnose biosynthesis in RGP production for protection of the organism against acid and oxidative stresses, the two major stressors that the organism encounters in the oral cavity. Loss of RGP also severely impacts biofilm formation, the first step in the onset of dental caries. The high conservation of the rhamnose synthesis enzymes, as well as their importance in S. mutans and other organisms, makes them favorable antibiotic targets for the treatment of disease.


Author(s):  
Amy Lynn Melok ◽  
Lee H. Lee ◽  
Siti Ayuni Mohamed Yussof ◽  
Tinchun Chu

Streptococcus mutans (S. mutans) is the main etiological bacteria present in the oral cavity that leads to dental caries. All of the S. mutans in the oral cavity form biofilms that adheres to the surfaces of teeth. Dental caries are infections facilitated by the development of biofilm. An esterified derivative of epigallocatechin-3-gallate (EGCG), epigallocatechin-3-gallate-sterate (EGCG-S) was used in this study to assess its ability to inhibit the growth and biofilm formation of S. mutans. The effect of EGCG-S on bacterial growth was evaluated with colony forming units (CFU) and log reduction; biofilm formation was qualitatively determined by Congo red assay, and quantitatively determined by crystal violet assay, fluorescence-based LIVE/DEAD assays to study the cell viability, and scanning electron microscopy (SEM) was used to evaluate the morphological changes. The results indicated that EGCG-S was able to completely inhibit growth and biofilm formation at concentrations of 250 µg/ml. Its effectiveness was also compared with a commonly prescribed mouthwash in the United States, chlorhexidine gluconate. EGCG-S was shown to be equally effective in reducing S. mutans growth as chlorhexidine gluconate. In conclusion, EGCG-S is potentially a natural anticariogenic agent by reducing bacterial presence in the oral cavity.


mSystems ◽  
2021 ◽  
Author(s):  
Tao Gong ◽  
Xiaoya He ◽  
Jiamin Chen ◽  
Boyu Tang ◽  
Ting Zheng ◽  
...  

The human oral cavity is a constantly changing environment. Tooth decay is a commonly prevalent chronic disease mainly caused by the cariogenic bacterium Streptococcus mutans . S. mutans is an oral pathogen that metabolizes various carbohydrates into extracellular polysaccharides (EPSs), biofilm, and tooth-destroying lactic acid.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zahra Rajabi ◽  
Rouha Kermanshahi ◽  
Mohammad Mehdi Soltan Dallal ◽  
Yousef Erfani ◽  
Reza Ranjbar

Background: The potential of Streptococcus mutans for biofilm formation makes it one of the main organisms causing dental caries. Various preventive strategies have been applied to reduce tooth decay. Objectives: In the current study, we aimed to isolate S. mutans bacteriophages from sewage and to investigate their effects on the expression of the genes involved in bacterial biofilm formation in dental caries. Methods: Eighty-one dental plaque samples were collected. Then to isolate and identify S. mutans, bacterial culture media and molecular tests were used. Moreover, the biofilm formation capability of the isolated S. mutans was determined. Also, lytic bacteriophages were isolated from raw urban sewage, and phage morphology was determined by transmission electron microscopy (TEM). Real-time PCR was used to assess the effects of the isolated bacteriophages on the expression of the genes involved in biofilm formation. Results: Overall, 32 (39.5%) samples were positive for the presence of S. mutans. All of the isolates contained the gtfD gene. The frequencies of other genes were as follows: gtfB (17, 53.12%), gtfC (19, 53.37%), SpaP (13, 40.62%), and luxS (23, 17.87%). The isolated S. mutans bacteria presented different ranges of biofilm formation ability. Based on TEM results, two sewage-isolated bacteriophages, belonging to Siphoviridae and Tectiviridae families, were able to prevent biofilm formation up to 97%. Conclusions: Our findings indicate that phage therapy can be an optional way for controlling biofilm development and reducing the colonization of teeth surface by S. mutans.


2020 ◽  
Vol 10 (2) ◽  
pp. 48
Author(s):  
Sri Kunarti ◽  
Aulia Ramadhani ◽  
Laskmiari Setyowati

Background: Dental caries is one of the most common infectious diseases and often occurs in the community caused by bacteria. Attached bacteria in the tooth surface for a long time will form a biofilm and will lead to demineralization characterized by damage in the structure of the tooth enamel. The bacteria that cause dental caries and can form biofilms is Streptococcus mutans. The bacteria inside biofilms are more resistant to antibacterial agents. Flavonoids in mangosteen pericarp extract can be a cleaner alternative for the anti-biofilm cavity that has properties against Streptococcus mutans. Purpose: To determine the activity of flavonoids in mangosteen pericarp extract at a certain concentration against Streptococcus mutans bacteria. Methods: This study was a laboratory experimental study with a post-test only control group design. Streptococcus mutans were diluted according to the Mc Farland dilution standard 106 in Tryptic Soy Broth (TSB) medium and put in a flexible U-bottom microtiter plate. Then it was incubated for 5x24 hours and checked using crystal violet simple staining to see the formation of biofilms. Flavonoid extract of mangosteen pericarp performed serial dilution in a concentration of 100%, 50%, 25%, 12.5%, 6.25%, 3.125%, 1.56%, and 0.78% was added, and the incubation process were conducted for 1x24 hours. OD (Optical Density) readings were done with a wavelength of 595 nm. Results: There was a significant difference between the test groups and the positive control group. The concentration of 100% had the anti-biofilm activity and showed the value of the highest percentage of inhibition, whilst the concentration of 0.78% showed a minimum biofilm inhibition concentration. The results were demonstrated by a statistical analysis test. Conclusion: Flavonoid extract of mangosteen pericarp at a certain concentration has anti-biofilm activity against Streptococcus mutans biofilm.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Hiu Ham Lee ◽  
Preethi Sudhakara ◽  
Shreena Desai ◽  
Kildare Miranda ◽  
Luis R. Martinez

ABSTRACT “METH mouth” is a common consequence of chronic methamphetamine (METH) use, resulting in tooth decay and painful oral tissue inflammation that can progress to complete tooth loss. METH reduces the amount of saliva in the mouth, promoting bacterial growth, tooth decay, and oral tissue damage. This oral condition is worsened by METH users’ compulsive behavior, including high rates of consumption of sugary drinks, recurrent tooth grinding, and a lack of frequent oral hygiene. Streptococcus mutans is a Gram-positive bacterium found in the oral cavity and associated with caries in humans. Hence, we developed a murine model of METH administration, sugar intake, and S. mutans infection to mimic METH mouth in humans and to investigate the impact of this drug on tooth colonization. We demonstrated that the combination of METH and sucrose stimulates S. mutans tooth adhesion, growth, and biofilm formation in vivo. METH and sucrose increased the expression of S. mutans glycosyltransferases and lactic acid production. Moreover, METH contributes to the low environmental pH and S. mutans sucrose metabolism, providing a plausible mechanism for bacterium-mediated tooth decay. Daily oral rinse treatment with chlorhexidine significantly reduces tooth colonization in METH- and sucrose-treated mice. Furthermore, human saliva inhibits S. mutans colonization and biofilm formation after exposure to either sucrose or the combination of METH and sucrose. These findings suggest that METH might increase the risk of microbial dental disease in users, information that may help in the development of effective public health strategies to deal with this scourge in our society. IMPORTANCE “METH mouth” is characterized by severe tooth decay and gum disease, which often causes teeth to break or fall out. METH users are also prone to colonization by cariogenic bacteria such as Streptococcus mutans. In addition, this oral condition is aggravated by METH users’ compulsive behavior, including the consumption of beverages with high sugar content, recurrent tooth grinding, and a lack of frequent oral hygiene. We investigated the effects of METH and sugar consumption on S. mutans biofilm formation and tooth colonization. Using a murine model of METH administration, sucrose ingestion, and oral infection, we found that the combination of METH and sucrose increases S. mutans adhesion and biofilm formation on the teeth of C57BL/6 mice. However, daily chlorhexidine-based oral rinse treatment reduces S. mutans tooth colonization. Similarly, METH has been associated with dry mouth or hyposalivation in users. Hence, we assessed the impact of human saliva on biofilm formation and demonstrated that surface preconditioning with saliva substantially reduces S. mutans biofilm formation. Our results are significant because to our knowledge, this is the first basic science study focused on elucidating the fundamentals of METH mouth using a rodent model of prolonged drug injection and S. mutans oral infection. Our findings may have important translational implications for the development of treatments for the management of METH mouth and more effective preventive public health strategies that can be applied to provide effective dental care for METH users in prisons, drug treatment centers, and health clinics.


Sign in / Sign up

Export Citation Format

Share Document