scholarly journals DeepBL: a deep learning-based approach for in silico discovery of beta-lactamases

Author(s):  
Yanan Wang ◽  
Fuyi Li ◽  
Manasa Bharathwaj ◽  
Natalia C Rosas ◽  
André Leier ◽  
...  

Abstract Beta-lactamases (BLs) are enzymes localized in the periplasmic space of bacterial pathogens, where they confer resistance to beta-lactam antibiotics. Experimental identification of BLs is costly yet crucial to understand beta-lactam resistance mechanisms. To address this issue, we present DeepBL, a deep learning-based approach by incorporating sequence-derived features to enable high-throughput prediction of BLs. Specifically, DeepBL is implemented based on the Small VGGNet architecture and the TensorFlow deep learning library. Furthermore, the performance of DeepBL models is investigated in relation to the sequence redundancy level and negative sample selection in the benchmark dataset. The models are trained on datasets of varying sequence redundancy thresholds, and the model performance is evaluated by extensive benchmarking tests. Using the optimized DeepBL model, we perform proteome-wide screening for all reviewed bacterium protein sequences available from the UniProt database. These results are freely accessible at the DeepBL webserver at http://deepbl.erc.monash.edu.au/.

Author(s):  
Olga Lomovskaya ◽  
Debora Rubio-Aparicio ◽  
Ruslan Tsivkovski ◽  
Jeff Loutit ◽  
Michael Dudley

QPX7728 is a cyclic boronate ultra-broad-spectrum beta-lactamase inhibitor, with potent activity against both serine and metallo beta-lactamases. QPX7728 can be delivered systemically by the IV or oral route of administration. Oral β-lactam antibiotics alone or in combination with QPX7728 were evaluated for 1) sensitivity to hydrolysis by various common beta-lactamases and inhibition of hydrolysis by QPX7728; 2) the impact of non-beta-lactamase-mediated resistance mechanisms on potency of beta-lactams; and 3) in vitro activity against a panel of clinical strains producing diverse beta-lactamases. The carbapenem tebipenem had stability for many serine beta-lactamases from all molecular classes followed by cephalosporin ceftibuten. Addition of QPX7728 to tebipenem, ceftibuten and mecillinam completely reversed beta-lactamase-mediated resistance in cloned beta-lactamases from serine and metallo enzyme classes; the degree of potentiation of other beta-lactams varied according to the beta-lactamase produced. Tebipenem, ceftibuten and cefixime had the lowest MICs against laboratory strains with various combinations of beta-lactamases and the intrinsic drug-resistance mechanisms of porin and efflux mutations. There was a high degree of correlation between potency of various combinations against cloned beta-lactamases and efflux/porin mutants and the activity against clinical isolates, showing the importance of both inhibition of beta-lactamase along with minimal impact of general intrinsic resistance mechanisms affecting the beta-lactam. Tebipenem and ceftibuten appeared to be the best beta-lactam antibiotics when combined with QPX7728 for activity against Enterobacterales that produce serine or metallo beta-lactamases.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Olga Lomovskaya ◽  
Kirk Nelson ◽  
Debora Rubio-Aparicio ◽  
Ruslan Tsivkovski ◽  
Dongxu Sun ◽  
...  

ABSTRACT QPX7728 is an ultrabroad-spectrum boronic acid beta-lactamase inhibitor that demonstrates inhibition of key serine and metallo-beta-lactamases at a nanomolar concentration range in biochemical assays with purified enzymes. The broad-spectrum inhibitory activity of QPX7728 observed in biochemical experiments translates into enhancement of the potency of many beta-lactams against strains of target pathogens producing beta-lactamases. The impacts of bacterial efflux and permeability on inhibitory potency were determined using isogenic panels of KPC-3-producing isogenic strains of Klebsiella pneumoniae and Pseudomonas aeruginosa and OXA-23-producing strains of Acinetobacter baumannii with various combinations of efflux and porin mutations. QPX7728 was minimally affected by multidrug resistance efflux pumps either in Enterobacteriaceae or in nonfermenters, such as P. aeruginosa or A. baumannii. Against P. aeruginosa, the potency of QPX7728 was further enhanced when the outer membrane was permeabilized. The potency of QPX7728 against P. aeruginosa was not affected by inactivation of the carbapenem porin OprD. While changes in OmpK36 (but not OmpK35) reduced the potency of QPX7728 (8- to 16-fold), QPX7728 (4 μg/ml) nevertheless completely reversed the KPC-mediated meropenem resistance in strains with porin mutations, consistent with the lesser effect of these mutations on the potency of QPX7728 compared to that of other agents. The ultrabroad-spectrum beta-lactamase inhibition profile, combined with enhancement of the activity of multiple beta-lactam antibiotics with various sensitivities to the intrinsic resistance mechanisms of efflux and permeability, indicates that QPX7728 is a useful inhibitor for use with multiple beta-lactam antibiotics.


2020 ◽  
Vol 13 (3) ◽  
pp. 135-140
Author(s):  
HauwaYakubu ◽  
Mahmud Yerima Iliyasu ◽  
Asma’u Salisu ◽  
Abdulmumin Ibrahim Sulaiman ◽  
Fatima Tahir ◽  
...  

Carbapenemases are microbial enzymes that confer resistance to virtually all available beta-lactam antibiotics and the most frequent carbapenemases are the Klebsiella pneumoniae Carbapenamase (KPC). Detection of carbapenemases is a significant infection control strategy as the enzymes are often associated with extensive antimicrobial resistance, therapeutic failures and mortality associated with infectious diseases. A total of 400 clinical samples were collected from different groups of patients in Abubakar Tafawa Balewa University Teaching Hospital, Bauchi, Nigeria and 118 K. pneumoniae were isolated using standard microbiological techniques. The isolates were subjected to antibiotic susceptibility testing by Kirby-Bauer disc diffusion method, then screened for Carbapenamase production using modified Hodge test. The results indicated that the isolates were resistant to Ampicillin (61.9%), Ceftriaxone (50.8%) and Ceftazidime (50.8%), then Ciprofloxacin (54.2%), but predominantly sensitive to Imipenem (66.9%), Eterpenem (60.2%) and Meropenem (65.3%). It was found that 38 (32.2%) of the isolates phenotypically shows the presence of Carbapenamase, with highest frequency of (40.7%) among patients, mainly adult females with cases of Urinary Tract Infections (UTIs) and the least from wound (11.8%).This study revealed that the isolates produced other beta-lactamases than KPC or variants of Carbapenamase that cannot be detected by modified Hodge test, thus shows low resistance to carbapenems. Therefore further studies is needed to genotypically confirm the presence of KPC in these isolates.


2021 ◽  
Vol 38 (3) ◽  
pp. 301-304
Author(s):  
Zahra SADEGHI DEYLAMDEH ◽  
Abolfazl JAFARI SALES

Beta-lactamases are the most common cause of bacterial resistance to beta-lactam antibiotics. AmpC-type beta-lactamases hydrolyze cephalosporins, penicillins, and cephamycins. Therefore, the study aims was to determine antibiotic resistance and to investigate the presence of AmpC beta-lactamase gene in clinical strains of Escherichia coli isolated from hospitalized patients in Tabriz. In this cross-sectional descriptive study, 289 E. coli specimens were collected from clinical specimens. Disk diffusion method and combined disk method were used to determine the phenotype of extended spectrum β-Lactamase producing (ESBLs) strains. Then PCR was used to evaluate the presence of AmpC (FOX) beta-lactamase gene in the strains confirmed in phenotypic tests. Antibiotic resistance was also determined using disk diffusion by the Kibry-Bauer method. A total of 121 isolates were identified as generators of beta-lactamase genes. 72 (59.5 %) isolates producing ESBL and 49 (40.5 %) isolates were identified as AmpC generators. In the PCR test, 31 isolates contained the FOX gene. The highest resistance was related to the antibiotics amoxicillin (76.12%), ceftazidime (70.24%) and nalidixic acid (65.05%). The results indicate an increase in the prevalence of beta-lactamase genes and increased resistance to beta-lactam antibiotics, which can be the result of improper use of antibiotics and not using antibiotic susceptibility tests before starting treatment. Also, using phenotypic and molecular diagnostic methods such as PCR together can be very useful.


Author(s):  
Olga Lomovskaya ◽  
Debora Rubio-Aparicio ◽  
Kirk Nelson ◽  
Dongxu Sun ◽  
Ruslan Tsivkovski ◽  
...  

QPX7728 is an ultra-broad-spectrum beta-lactamase inhibitor with potent inhibition of key serine and metallo beta-lactamases. QPX7728 enhances the potency of multiple beta-lactams in beta-lactamase producing Enterobacterales and Acinetobacter spp. In this study we evaluated the in vitro activity of QPX7728 (8 μg/ml) combined with multiple beta-lactams against clinical isolates of Pseudomonas aeruginosa with varying beta-lactam resistance mechanisms. Seven-hundred-ninety clinical isolates were included in this study; 500 isolates, termed a “representative panel”, were selected to be representative the MIC distribution of meropenem (MEM), ceftazidime-avibactam (CAZ-AVI), and ceftolozane-tazobactam (TOL-TAZ) resistance for clinical isolates according to 2017 SENTRY surveillance data (representative panel). An additional 290 selected isolates (“challenge panel”), that were either non-susceptible to MEM or were resistant to TOL-TAZ or CAZ-AVI were also tested; 61 strains carried metallo beta-lactamases (MBLs), 211 strains were defective in the carbapenem porin OprD and 185 strains had the MexAB-OprM efflux pump overproduced based on a phenotypic test. Against the representative panel, susceptibility for all QPX7728/beta-lactam combinations was >90%. For the challenge panel, QPX-ceftolozane (TOL) was the most active combination (78.6% susceptible) followed by equipotent QPX-piperacillin (PIP) and QPX-cefepime (FEP), restoring susceptibility in 70.3% of strains (CLSI breakpoints for the beta-lactam compound alone). For MBL-negative strains, QPX-TOL and QPX-FEP restored the MIC values to susceptibility rates in ∼90% and ∼80% of strains, respectively, vs 68-70% for QPX-MEM and QPX-PIP and 63-65% for TOL-TAZ and CAZ-AVI. For MBL-positive strains, QPX-PIP restored the MIC to susceptibility values for ∼70% of strains vs 2-40% for other combinations. Increased efflux and impaired OprD had varying effect on QPX7728 combination depending on the partner beta-lactam tested. QPX7728 enhanced the potency of multiple beta-lactams against P. aeruginosa, with varying results according to the beta-lactamase production and other intrinsic resistance mechanisms.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ruslan Tsivkovski ◽  
Maxim Totrov ◽  
Olga Lomovskaya

ABSTRACT QPX7728 is a new ultrabroad-spectrum inhibitor of serine and metallo-beta-lactamases (MBLs) from a class of cyclic boronates that gave rise to vaborbactam. The spectrum and mechanism of beta-lactamase inhibition by QPX7728 were assessed using purified enzymes from all molecular classes. QPX7728 inhibits class A extended-spectrum beta-lactamases (ESBLs) (50% inhibitory concentration [IC50] range, 1 to 3 nM) and carbapenemases such as KPC (IC50, 2.9 ± 0.4 nM) as well as class C P99 (IC50 of 22 ± 8 nM) with a potency that is comparable to or higher than recently FDA-approved beta-lactamase inhibitors (BLIs) avibactam, relebactam, and vaborbactam. Unlike those other BLIs, QPX7728 is also a potent inhibitor of class D carbapenemases such as OXA-48 from Enterobacteriaceae and OXA enzymes from Acinetobacter baumannii (OXA-23/24/58, IC50 range, 1 to 2 nM) as well as MBLs such as NDM-1 (IC50, 55 ± 25 nM), VIM-1 (IC50, 14 ± 4 nM), and IMP-1 (IC50, 610 ± 70 nM). Inhibition of serine enzymes by QPX7728 is associated with progressive inactivation with a high-efficiency k2/K ranging from 6.3 × 104 (for P99) to 9.9 × 105 M−1 s−1 (for OXA-23). This inhibition is reversible with variable stability of the QPX7728-beta-lactamase complexes with target residence time ranging from minutes to several hours: 5 to 20 min for OXA carbapenemases from A. baumannii, ∼50 min for OXA-48, and 2 to 3 h for KPC and CTX-M-15. QPX7728 inhibited all tested serine enzymes at a 1:1 molar ratio. Metallo-beta-lactamases NDM, VIM, and IMP were inhibited by a competitive mechanism with fast-on–fast-off kinetics, with Kis of 7.5 ± 2.1 nM, 32 ± 14 nM, and 240 ± 30 nM for VIM-1, NDM-1, and IMP-1, respectively. QPX7728’s ultrabroad spectrum of BLI inhibition combined with its high potency enables combinations with multiple different beta-lactam antibiotics.


2017 ◽  
Vol 68 (6) ◽  
pp. 1225-1228
Author(s):  
Carmen Axente ◽  
Delia Muntean ◽  
Luminita Baditoiu ◽  
Roxana Moldovan ◽  
Elena Hogea ◽  
...  

Intensive care units (ICUs) are often referred to as the epicentre of infection diseases in a hospital. Many studies highlighted the importance of using local antimicrobial resistance data, to guide empirical antibiotic therapy. As a consequence, the present study is particularly important, especially in the current context, when we are witnessing an ascending trend of antimicrobial resistance. Beta-lactams are the most frequently used class of antibiotics for treating patients infected with various germs. The aim of this study is to analyse the modalities by which microorganisms become resistant to antibiotics of this class, in an intensive care unit of a Romanian university hospital. During the period between January, the 1st 2012 and December the 31st 2013, a prospective study was conducted in the largest ICU from the Western part of Romania. Various resistance mechanisms to beta-lactam antibiotics were detected. Among these, there is great concern regarding the high number of extended-spectrum beta-lactamase producing microorganisms, as in most cases they determine the use of carbapenems, thus increasing the risk of occurrence and dissemination of carbapenemase-producing bacteria.


Sign in / Sign up

Export Citation Format

Share Document