scholarly journals Basic polar and hydrophobic properties are the main characteristics that affect the binding of transcription factors to methylation sites

2020 ◽  
Vol 36 (15) ◽  
pp. 4263-4268
Author(s):  
Zijie Shen ◽  
Quan Zou

Abstract Motivation Methylation and transcription factors (TFs) are part of the mechanisms regulating gene expression. However, the numerous mechanisms regulating the interactions between methylation and TFs remain unknown. We employ machine-learning techniques to discover the characteristics of TFs that bind to methylation sites. Results The classical machine-learning analysis process focuses on improving the performance of the analysis method. Conversely, we focus on the functional properties of the TF sequences. We obtain the principal properties of TFs, namely, the basic polar and hydrophobic Ile amino acids affecting the interaction between TFs and methylated DNA. The recall of the positive instances is 0.878 when their basic polar value is >0.1743. Both basic polar and hydrophobic Ile amino acids distinguish 74% of TFs bound to methylation sites. Therefore, we infer that basic polar amino acids affect the interactions of TFs with methylation sites. Based on our results, the role of the hydrophobic Ile residue is consistent with that described in previous studies, and the basic polar amino acids may also be a key factor modulating the interactions between TFs and methylation. Supplementary information Supplementary data are available at Bioinformatics online.

Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


Author(s):  
Deepti Rani ◽  
Anju Sangwan ◽  
Anupma Sangwan ◽  
Tajinder Singh

With the enormous growth of sensor networks, information seeking from such networks has become an invaluable source of knowledge for various organizations to enhance the comprehension of people interests. Not only wireless sensor networks (WSNs) but its various classes also remain the hot topics of research. In this chapter, the primary focus is to understand the concept of sensor network in underwater scenario. Various mechanisms are used to recognize the activities underwater using sensor which examines the real-time events. With these features, a few challenges are also associated with sensor networks, which are addressed here. Machine learning (ML) techniques are the perfect key of success to resolve such issues due to their feasibility and adaption in complex problem environment. Therefore, various ML techniques have been explained to enhance the operational performance of WSNs, especially in underwater WSNs (UWSNs). The main objective of this chapter is to understand the concepts of UWSNs and role of ML to address the performance issues of UWSNs.


2020 ◽  
Vol 15 (3) ◽  
pp. 340
Author(s):  
Abhishek Agnihotri ◽  
Vikash Yadav ◽  
Vandana Dixit Kaushik

2020 ◽  
pp. 101806
Author(s):  
Omid Khalaj ◽  
Moslem Ghobadi ◽  
Alireza Zarezadeh ◽  
Ehsan Saebnoori ◽  
Hana Jirková ◽  
...  

Author(s):  
Armin Rauschenberger ◽  
Enrico Glaab ◽  
Mark van de Wiel

Abstract Motivation Machine learning in the biomedical sciences should ideally provide predictive and interpretable models. When predicting outcomes from clinical or molecular features, applied researchers often want to know which features have effects, whether these effects are positive or negative, and how strong these effects are. Regression analysis includes this information in the coefficients but typically renders less predictive models than more advanced machine learning techniques. Results Here we propose an interpretable meta-learning approach for high-dimensional regression. The elastic net provides a compromise between estimating weak effects for many features and strong effects for some features. It has a mixing parameter to weight between ridge and lasso regularisation. Instead of selecting one weighting by tuning, we combine multiple weightings by stacking. We do this in a way that increases predictivity without sacrificing interpretability. Availability and Implementation The R package starnet is available on GitHub: https://github.com/rauschenberger/starnet. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Shaker El-Sappagh ◽  
Tamer Abuhmed ◽  
Bader Alouffi ◽  
Radhya Sahal ◽  
Naglaa Abdelhade ◽  
...  

Early detection of Alzheimer’s disease (AD) progression is crucial for proper disease management. Most studies concentrate on neuroimaging data analysis of baseline visits only. They ignore the fact that AD is a chronic disease and patient’s data are naturally longitudinal. In addition, there are no studies that examine the effect of dementia medicines on the behavior of the disease. In this paper, we propose a machine learning-based architecture for early progression detection of AD based on multimodal data of AD drugs and cognitive scores data. We compare the performance of five popular machine learning techniques including support vector machine, random forest, logistic regression, decision tree, and K-nearest neighbor to predict AD progression after 2.5 years. Extensive experiments are performed using an ADNI dataset of 1036 subjects. The cross-validation performance of most algorithms has been improved by fusing the drugs and cognitive scores data. The results indicate the important role of patient’s taken drugs on the progression of AD disease.


Author(s):  
Anshul, Et. al.

COVID-19 virus belongs to the severe acute respiratory syndrome (SARS) family raised a situation of health emergency in almost all the countries of the world. Numerous machine learning and deep learning based techniques are used to diagnose COVID positive patients using different image modalities like CT SCAN, X-RAY, or CBX, etc. This paper provides the works done in COVID-19 diagnosis, the role of ML and DL based methods to solve this problem, and presents limitations with respect to COVID-19 diagnosis.


2019 ◽  
Vol 20 (1) ◽  
pp. 28-45
Author(s):  
Umair Ahmed ◽  
Rafia Mumtaz ◽  
Hirra Anwar ◽  
Sadaf Mumtaz ◽  
Ali Mustafa Qamar

Abstract The rapid urbanization and industrial development have resulted in water contamination and water quality deterioration at an alarming rate, deeming its quick, inexpensive and accurate detection imperative. Conventional methods to measure water quality are lengthy, expensive and inefficient, including the manual analysis process carried out in a laboratory. The research work in this paper focuses on the problem from various perspectives, including the traditional methods of determining water quality to gain insight into the problem and the analysis of state-of-the-art technologies, including Internet of Things (IoT) and machine learning techniques to address water quality. After analyzing the currently available solutions, this paper proposes an IoT-based low-cost system employing machine learning techniques to monitor water quality in real time, analyze water quality trends and detect anomalous events such as intentional contamination of water.


Sign in / Sign up

Export Citation Format

Share Document