scholarly journals Genoscapist: online exploration of quantitative profiles along genomes via interactively customized graphical representations

Author(s):  
Sandra Dérozier ◽  
Pierre Nicolas ◽  
Ulrike Mäder ◽  
Cyprien Guérin

Abstract Summary Genoscapist is a tool to design web interfaces generating high-quality images for interactive visualization of hundreds of quantitative profiles along a reference genome together with various annotations. Relevance is demonstrated by deployment of two websites dedicated to large condition-dependent transcriptome datasets available for Bacillus subtilis and Staphylococcus aureus. Availability and implementation Websites and source code freely accessible at https://genoscapist.migale.inrae.fr

2003 ◽  
Vol 56 (12) ◽  
pp. 1045-1052 ◽  
Author(s):  
TAKAFUMI WATANABE ◽  
YOSHIKI HASHIMOTO ◽  
KANEYOSHI YAMAMOTO ◽  
KIYO HIRAO ◽  
AKIRA ISHIHAMA ◽  
...  

2000 ◽  
Vol 55 (9-10) ◽  
pp. 778-784 ◽  
Author(s):  
Josep Serra Bonvehí ◽  
Francesc Ventura Coll

Abstract The composition, bacteriostatic and ROO• -scavenging potential activities of fifteen propolis samples from various botanic and geographic origins were determined to obtain objective information related to propolis quality. Variance analysis showed significant differences (p ≤ 0.05) in the contents of polyphenols, flavonoids and active components between fresh and aged propolis. The state of the product (fresh or aged) could be differentiate by using flavonoid pattern and biological activities. A minimum propolis concentration of 80 μg/ml was required inhibit Bacillus subtilis and Staphylococcus aureus while 800 μg/ml was required to inhibit Escherichia coli using fresh propolis. Aged propolis inhibit B. subtilis and S. aureus at concentration of 100 μg/ml and E. coli at 1000 μg/ml. A minimum flavonoids percentage of 18 g/100 g and a maximum ROO• -scavenging potential activity of 4.3 μg/ml were determined in fresh propolis. Flavonoids levels in aged propolis were approximately 20% lower than in fresh propolis. A maximum flavonoids percentage of 19.8 g/100 g and a ROO•-scavenging potential activity between 5.7 to 6.4 μg/ml in aged propolis were quantified. Another objective was to assess the use of ROO•-scavenging potential activity in propolis quality.


2020 ◽  
Vol 1 (2) ◽  
pp. 41-45
Author(s):  
A.Suparlan Isya Syamsu

Preliminary research has been conducted on the antimicrobial activity of n-Butanol extract of forest honey (Apis nigrocincta). This study aims to determine the antimicrobial activity of forest honey from Selayar Regency on the growth of test microbes, using the method of solid dilution with the test microbial Bacillus subtilis, Staphylococcus aureus, Streptococcus mutans, Pseudomonas aeruginosa, Salmonella typhi, Escherichia coli, Vibrio sp, Staphylococcus epidermidis, and Candida albicans against n-butanol extract from forest honey (Apis nigrocincta) at 1 mg/ml. The results obtained showed that n-butanol extract inhibited the growth of bacteria Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus aureus. To estimate the compounds that provide antimicrobial activity, the TLC-Bioautography test is performed. Obtained the best results from the separation of compounds by TLC using Chlorophorom eluate: Acetone (3: 1). The TLC-Bioautographic test results showed that the spots with an Rf value of 0.29 gave activity to Bacillus subtilis, Escherichia coli, and Staphylococcus epidermidis, and gave positive results on the appearance of flavonoid compounds.


2015 ◽  
Vol 1 (2) ◽  
pp. 126
Author(s):  
Urnemi ◽  
Sumaryati Syukur ◽  
Endang Purwati ◽  
Sanusi Ibrahim ◽  
Jamsari

ABSTRACT Lactic acid bacteria (LAB) were isolated from of cocoa beans fermentation Forestero variety from West Sumatera, that were eleven isolates. The isolates were tested to antimicrobial activity against pathogenic bacteria E.coli NBRC 14237, Staphylococcus aureus NBRC 13276, Bacillus subtilis BTCCB 612, listeria m. dan S. Typhii. Results the research showed that, isolates had inhibition zone to pathogenic bacteria, that were 7 mm till 12 mm at 48 hours observation. R2.4 isolate was most potential to inhibition zones growth pathogenic bacteria, that was 11mm till 12 mm to five pathogens. R2.4 isolates was the highest to against pathogenic bacteria (Bacillus subtilis BTCCB, Listeria monocytogenesis and Staphylococcus aureus NBRC) had inhibition zones, that was 12.00 mm till 48 hours. Listeria monocytogenesis had been known as pest bacterium of food born, so that R2.4 isolate can be used as food biopreservative. Crude of R2.4 isolate molecular weight was 10 kDa by SDS-PAGE.  Key words: Lactic acid bacteria, Antimicrobial activity, SDS-PAGE, Cocoa fermentation and food biopreservative                                                      


Author(s):  
Ifeoma Geraldine Okudo ◽  
Chinelo Ursula Umedum ◽  
Stephen Nnaemeka Ezekwueche ◽  
Chibuzo Christian Uba

Aim: This present study was conducted to isolate antibiotic producing bacteria from insects living in poultry. Place and Duration of Study: Insects living in poultry were collected from poultry farms within Onitsha metropolis in Anambra State between April 2018 and September 2018. Methodology: The gut of one hundred insects; (Musca domestica and Alphitobius diaperinus) were analyzed. The insects were dissected and emulsified in 10ml of peptone water. The dilutions were cultured on Nutrient agar and Blood agar  for 24 h. The bacterial isolates were characterized using  molecular identification. The DNA was extracted from the identified isolates and analyzed by 16S rRNA. In preliminary screening, the isolates were inoculated into Muller Hinton agar using agar plug. The promising isolate showing antagonism was subjected to submerged fermentation method and the secondary metabolites were extracted. Screening of the secondary metabolites extract was done using agar well diffusion. The minimum inhibitory concentration (MIC) of the secondary metabolite was determined using broth dilution method at different concentrations. The inhibitory activity of the organism was checked against four bacteria namely; Bacillus subtilis, Salmonella serovar typhi, Escherichia coli and Staphylococcus aureus. Results: The sequence analysis revealed the strains to be Lysinibacillus macroides, Paealcaligenes hermetiae, Bordetella flabilis, Bacillus aerophilus, Klebsiella variicola. Lysinibacillus macroides showed antagonism against the test bacteria during the preliminary test. After fermentation, the secondary metabolite extracts from Lysinibacillus macroides exhibited antibacterial activities against Salmonella Serovar Typhi, Staphyloccus aureus and Bacillus subtilis at different concentrations. Conclusion: The extracts from bacterial isolate; Lysinibacillus macroides exhibited antibacterial activities against Bacillus subtilis, Salmonella serovar typhi and Staphylococcus aureus. The extracts may serve as a new drug molecule produced from natural source when purified.


2009 ◽  
Vol 191 (24) ◽  
pp. 7520-7530 ◽  
Author(s):  
Dierk-Christoph Pöther ◽  
Manuel Liebeke ◽  
Falko Hochgräfe ◽  
Haike Antelmann ◽  
Dörte Becher ◽  
...  

ABSTRACT Glutathione constitutes a key player in the thiol redox buffer in many organisms. However, the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus lack this low-molecular-weight thiol. Recently, we identified S-cysteinylated proteins in B. subtilis after treatment of cells with the disulfide-generating electrophile diamide. S cysteinylation is thought to protect protein thiols against irreversible oxidation to sulfinic and sulfonic acids. Here we show that S thiolation occurs also in S. aureus proteins after exposure to diamide. We further analyzed the formation of inter- and intramolecular disulfide bonds in cytoplasmic proteins using diagonal nonreducing/reducing sodium dodecyl sulfate gel electrophoresis. However, only a few proteins were identified that form inter- or intramolecular disulfide bonds under control and diamide stress conditions in B. subtilis and S. aureus. Depletion of the cysteine pool was concomitantly measured in B. subtilis using a metabolomics approach. Thus, the majority of reversible thiol modifications that were previously detected by two-dimensional gel fluorescence-based thiol modification assay are most likely based on S thiolations. Finally, we found that a glutathione-producing B. subtilis strain which expresses the Listeria monocytogenes gshF gene did not show enhanced oxidative stress resistance compared to the wild type.


Sign in / Sign up

Export Citation Format

Share Document