scholarly journals FLINO—A new method for immunofluorescence bioimage normalization

Author(s):  
John Graf ◽  
Sanghee Cho ◽  
Elizabeth McDonough ◽  
Alex Corwin ◽  
Anup Sood ◽  
...  

Abstract Motivation Multiplexed immunofluorescence bioimaging of single-cells and their spatial organization in tissue holds great promise to the development of future precision diagnostics and therapeutics. Current multiplexing pipelines typically involve multiple rounds of immunofluorescence staining across multiple tissue slides. This introduces experimental batch effects that can hide underlying biological signal. It is important to have robust algorithms that can correct for the batch effects while not introducing biases into the data. Performance of data normalization methods can vary among different assay pipelines. To evaluate differences, it is critical to have a ground truth dataset that is representative of the assay. Results A new immunoFLuorescence Image NOrmalization (FLINO) method is presented and evaluated against alternative methods and workflows. Multi-round immunofluorescence staining of the same tissue with the nuclear dye DAPI was used to represent virtual slides and a ground truth. DAPI was re-stained on a given tissue slide producing multiple images of the same underlying structure but undergoing multiple representative tissue handling steps. This ground truth dataset was used to evaluate and compare multiple normalization methods including median, quantile, smooth quantile, median ratio normalization (MRN) and trimmed mean of the M-values (TMM). These methods were applied in both an unbiased grid object and segmented cell object workflow to 24 multiplexed biomarkers. An upper quartile normalization of grid objects in log space was found to obtain almost equivalent performance to directly normalizing segmented cell objects by the middle quantile. The developed grid-based technique was then applied with on-slide controls for evaluation. Using five or fewer controls per slide can introduce biases into the data. Ten or more on-slide controls were able to robustly correct for batch effects. Supplementary information Supplementary data are available at Bioinformatics online.

Blood ◽  
2019 ◽  
Vol 133 (13) ◽  
pp. 1436-1445 ◽  
Author(s):  
Jyoti Nangalia ◽  
Emily Mitchell ◽  
Anthony R. Green

Abstract Interrogation of hematopoietic tissue at the clonal level has a rich history spanning over 50 years, and has provided critical insights into both normal and malignant hematopoiesis. Characterization of chromosomes identified some of the first genetic links to cancer with the discovery of chromosomal translocations in association with many hematological neoplasms. The unique accessibility of hematopoietic tissue and the ability to clonally expand hematopoietic progenitors in vitro has provided fundamental insights into the cellular hierarchy of normal hematopoiesis, as well as the functional impact of driver mutations in disease. Transplantation assays in murine models have enabled cellular assessment of the functional consequences of somatic mutations in vivo. Most recently, next-generation sequencing–based assays have shown great promise in allowing multi-“omic” characterization of single cells. Here, we review how clonal approaches have advanced our understanding of disease development, focusing on the acquisition of somatic mutations, clonal selection, driver mutation cooperation, and tumor evolution.


Author(s):  
Wenbin Ye ◽  
Tao Liu ◽  
Hongjuan Fu ◽  
Congting Ye ◽  
Guoli Ji ◽  
...  

Abstract Motivation Alternative polyadenylation (APA) has been widely recognized as a widespread mechanism modulated dynamically. Studies based on 3′ end sequencing and/or RNA-seq have profiled poly(A) sites in various species with diverse pipelines, yet no unified and easy-to-use toolkit is available for comprehensive APA analyses. Results We developed an R package called movAPA for modeling and visualization of dynamics of alternative polyadenylation across biological samples. movAPA incorporates rich functions for preprocessing, annotation and statistical analyses of poly(A) sites, identification of poly(A) signals, profiling of APA dynamics and visualization. Particularly, seven metrics are provided for measuring the tissue-specificity or usages of APA sites across samples. Three methods are used for identifying 3′ UTR shortening/lengthening events between conditions. APA site switching involving non-3′ UTR polyadenylation can also be explored. Using poly(A) site data from rice and mouse sperm cells, we demonstrated the high scalability and flexibility of movAPA in profiling APA dynamics across tissues and single cells. Availability and implementation https://github.com/BMILAB/movAPA. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (10) ◽  
pp. 3011-3017 ◽  
Author(s):  
Olga Mineeva ◽  
Mateo Rojas-Carulla ◽  
Ruth E Ley ◽  
Bernhard Schölkopf ◽  
Nicholas D Youngblut

Abstract Motivation Methodological advances in metagenome assembly are rapidly increasing in the number of published metagenome assemblies. However, identifying misassemblies is challenging due to a lack of closely related reference genomes that can act as pseudo ground truth. Existing reference-free methods are no longer maintained, can make strong assumptions that may not hold across a diversity of research projects, and have not been validated on large-scale metagenome assemblies. Results We present DeepMAsED, a deep learning approach for identifying misassembled contigs without the need for reference genomes. Moreover, we provide an in silico pipeline for generating large-scale, realistic metagenome assemblies for comprehensive model training and testing. DeepMAsED accuracy substantially exceeds the state-of-the-art when applied to large and complex metagenome assemblies. Our model estimates a 1% contig misassembly rate in two recent large-scale metagenome assembly publications. Conclusions DeepMAsED accurately identifies misassemblies in metagenome-assembled contigs from a broad diversity of bacteria and archaea without the need for reference genomes or strong modeling assumptions. Running DeepMAsED is straight-forward, as well as is model re-training with our dataset generation pipeline. Therefore, DeepMAsED is a flexible misassembly classifier that can be applied to a wide range of metagenome assembly projects. Availability and implementation DeepMAsED is available from GitHub at https://github.com/leylabmpi/DeepMAsED. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Shikha Suman ◽  
Ashutosh Karna ◽  
Karina Gibert

Hierarchical clustering is one of the most preferred choices to understand the underlying structure of a dataset and defining typologies, with multiple applications in real life. Among the existing clustering algorithms, the hierarchical family is one of the most popular, as it permits to understand the inner structure of the dataset and find the number of clusters as an output, unlike popular methods, like k-means. One can adjust the granularity of final clustering to the goals of the analysis themselves. The number of clusters in a hierarchical method relies on the analysis of the resulting dendrogram itself. Experts have criteria to visually inspect the dendrogram and determine the number of clusters. Finding automatic criteria to imitate experts in this task is still an open problem. But, dependence on the expert to cut the tree represents a limitation in real applications like the fields industry 4.0 and additive manufacturing. This paper analyses several cluster validity indexes in the context of determining the suitable number of clusters in hierarchical clustering. A new Cluster Validity Index (CVI) is proposed such that it properly catches the implicit criteria used by experts when analyzing dendrograms. The proposal has been applied on a range of datasets and validated against experts ground-truth overcoming the results obtained by the State of the Art and also significantly reduces the computational cost.


2017 ◽  
Author(s):  
Zhun Miao ◽  
Ke Deng ◽  
Xiaowo Wang ◽  
Xuegong Zhang

AbstractSummaryThe excessive amount of zeros in single-cell RNA-seq data include “real” zeros due to the on-off nature of gene transcription in single cells and “dropout” zeros due to technical reasons. Existing differential expression (DE) analysis methods cannot distinguish these two types of zeros. We developed an R package DEsingle which employed Zero-Inflated Negative Binomial model to estimate the proportion of real and dropout zeros and to define and detect 3 types of DE genes in single-cell RNA-seq data with higher accuracy.Availability and ImplementationThe R package DEsingle is freely available at https://github.com/miaozhun/DEsingle and is under Bioconductor’s consideration [email protected] informationSupplementary data are available at bioRxiv online.


2019 ◽  
Vol 35 (21) ◽  
pp. 4525-4527 ◽  
Author(s):  
Alex X Lu ◽  
Taraneh Zarin ◽  
Ian S Hsu ◽  
Alan M Moses

Abstract Summary We introduce YeastSpotter, a web application for the segmentation of yeast microscopy images into single cells. YeastSpotter is user-friendly and generalizable, reducing the computational expertise required for this critical preprocessing step in many image analysis pipelines. Availability and implementation YeastSpotter is available at http://yeastspotter.csb.utoronto.ca/. Code is available at https://github.com/alexxijielu/yeast_segmentation. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (19) ◽  
pp. 4935-4941 ◽  
Author(s):  
Yao Yao ◽  
Ihor Smal ◽  
Ilya Grigoriev ◽  
Anna Akhmanova ◽  
Erik Meijering

Abstract Motivation Biological studies of dynamic processes in living cells often require accurate particle tracking as a first step toward quantitative analysis. Although many particle tracking methods have been developed for this purpose, they are typically based on prior assumptions about the particle dynamics, and/or they involve careful tuning of various algorithm parameters by the user for each application. This may make existing methods difficult to apply by non-expert users and to a broader range of tracking problems. Recent advances in deep-learning techniques hold great promise in eliminating these disadvantages, as they can learn how to optimally track particles from example data. Results Here, we present a deep-learning-based method for the data association stage of particle tracking. The proposed method uses convolutional neural networks and long short-term memory networks to extract relevant dynamics features and predict the motion of a particle and the cost of linking detected particles from one time point to the next. Comprehensive evaluations on datasets from the particle tracking challenge demonstrate the competitiveness of the proposed deep-learning method compared to the state of the art. Additional tests on real-time-lapse fluorescence microscopy images of various types of intracellular particles show the method performs comparably with human experts. Availability and implementation The software code implementing the proposed method as well as a description of how to obtain the test data used in the presented experiments will be available for non-commercial purposes from https://github.com/yoyohoho0221/pt_linking. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Hyun-Myung Woo ◽  
Byung-Jun Yoon

Abstract Motivation Alignment of protein–protein interaction networks can be used for the unsupervised prediction of functional modules, such as protein complexes and signaling pathways, that are conserved across different species. To date, various algorithms have been proposed for biological network alignment, many of which attempt to incorporate topological similarity between the networks into the alignment process with the goal of constructing accurate and biologically meaningful alignments. Especially, random walk models have been shown to be effective for quantifying the global topological relatedness between nodes that belong to different networks by diffusing node-level similarity along the interaction edges. However, these schemes are not ideal for capturing the local topological similarity between nodes. Results In this article, we propose MONACO, a novel and versatile network alignment algorithm that finds highly accurate pairwise and multiple network alignments through the iterative optimal matching of ‘local’ neighborhoods around focal nodes. Extensive performance assessment based on real networks as well as synthetic networks, for which the ground truth is known, demonstrates that MONACO clearly and consistently outperforms all other state-of-the-art network alignment algorithms that we have tested, in terms of accuracy, coherence and topological quality of the aligned network regions. Furthermore, despite the sharply enhanced alignment accuracy, MONACO remains computationally efficient and it scales well with increasing size and number of networks. Availability and implementation Matlab implementation is freely available at https://github.com/bjyoontamu/MONACO. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (22) ◽  
pp. 4724-4729 ◽  
Author(s):  
Wujuan Zhong ◽  
Cassandra N Spracklen ◽  
Karen L Mohlke ◽  
Xiaojing Zheng ◽  
Jason Fine ◽  
...  

Abstract Summary Tens of thousands of reproducibly identified GWAS (Genome-Wide Association Studies) variants, with the vast majority falling in non-coding regions resulting in no eventual protein products, call urgently for mechanistic interpretations. Although numerous methods exist, there are few, if any methods, for simultaneously testing the mediation effects of multiple correlated SNPs via some mediator (e.g. the expression of a gene in the neighborhood) on phenotypic outcome. We propose multi-SNP mediation intersection-union test (SMUT) to fill in this methodological gap. Our extensive simulations demonstrate the validity of SMUT as well as substantial, up to 92%, power gains over alternative methods. In addition, SMUT confirmed known mediators in a real dataset of Finns for plasma adiponectin level, which were missed by many alternative methods. We believe SMUT will become a useful tool to generate mechanistic hypotheses underlying GWAS variants, facilitating functional follow-up. Availability and implementation The R package SMUT is publicly available from CRAN at https://CRAN.R-project.org/package=SMUT. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document