scholarly journals Differences in gene expression between B-cell chronic lymphocytic leukemia and normal B cells: a meta-analysis of three microarray studies

2004 ◽  
Vol 20 (17) ◽  
pp. 3166-3178 ◽  
Author(s):  
J. Wang ◽  
K. R. Coombes ◽  
W. E. Highsmith ◽  
M. J. Keating ◽  
L. V. Abruzzo
2001 ◽  
Vol 194 (11) ◽  
pp. 1639-1648 ◽  
Author(s):  
Andreas Rosenwald ◽  
Ash A. Alizadeh ◽  
George Widhopf ◽  
Richard Simon ◽  
R. Eric Davis ◽  
...  

The most common human leukemia is B cell chronic lymphocytic leukemia (CLL), a malignancy of mature B cells with a characteristic clinical presentation but a variable clinical course. The rearranged immunoglobulin (Ig) genes of CLL cells may be either germ-line in sequence or somatically mutated. Lack of Ig mutations defined a distinctly worse prognostic group of CLL patients raising the possibility that CLL comprises two distinct diseases. Using genomic-scale gene expression profiling, we show that CLL is characterized by a common gene expression “signature,” irrespective of Ig mutational status, suggesting that CLL cases share a common mechanism of transformation and/or cell of origin. Nonetheless, the expression of hundreds of other genes correlated with the Ig mutational status, including many genes that are modulated in expression during mitogenic B cell receptor signaling. These genes were used to build a CLL subtype predictor that may help in the clinical classification of patients with this disease.


2017 ◽  
Vol 39 (2) ◽  
pp. 141-144
Author(s):  
S V Andreieva ◽  
K V Korets ◽  
O E Ruzhinska ◽  
I M Skorokhod ◽  
O G Alkhimova

Aim: The genetic mechanisms of resistance to chemotherapy in B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma (B-CLL/SLL) are not clear. We aimed to determine the peculiarities of abnormal karyotype formation in bone marrow (BM) cells and peripheral blood (PB) blast transformed B-cells in relapse of B-CLL/SLL. Materials and Methods: Cytogenetic GTG banding technique and molecular cytogenetic in interphase cells (i-FISH) studies of BM cells and PB blast transformed B-lymphocytes were performed in 14 patients (10 males and 4 females) with B-CLL/SLL. Results: The results of karyotyping BM and PB cells revealed the heterogeneity of cytogenetic abnormalities in combined single nosological group of B-CLL/SLL. In PB B-cells, chromosome abnormalities related to a poor prognosis group were registered 2.5 times more often than in BM cells. Additional near tetraploid clones that occurred in 57.1% cases were the peculiar feature of BM cell karyotypes. Chromosomal rearrangements characteristic of the group of adverse cytogenetic prognosis were revealed in all cases from which in 2 cases by karyotyping BM cells, in 6 cases in PB B-cells and in 8 cases by the i-FISH method in BM cells, i.e. their detection frequency was 3 times higher in PB B-cells and 4 times higher when analyzing by i-FISH in BM cells. Conclusions: Mismatch in abnormal karyotypes in BM and PB B-cells by the presence of quantitative and structural chromosomal rearrangements may be indicative of simultaneous and independent processes of abnormal clone formation in the lymph nodes and BM hematopoietic cells. Accumulation the information about previously unidentified chromosomal rearrangements in relapse of the disease may help to understand the ways of resistance formation to chemotherapy.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1135-1135
Author(s):  
Renee C. Tschumper ◽  
Jaime R. Darce ◽  
Xiaosheng Wu ◽  
Stephen A. Mihalcik ◽  
Diane F. Jelinek

Abstract B cell-activating factor (BAFF) is known to regulate normal B cell development and homeostasis primarily by signaling through the high affinity receptor, BAFF-R, one of three BAFF binding receptors (BBRs). BAFF also binds two other receptors, BCMA and TACI with lesser affinity. We have recently shown that normal peripheral blood (PB) B cells express high levels of prebound soluble BAFF, which is lost upon B cell activation. Because of BAFF’s activity on normal B cells, we have been interested in the roles of BAFF and BBRs in B cell chronic lymphocytic leukemia (B-CLL). We and others have demonstrated that BAFF promotes primary CLL B cell survival and that serum BAFF levels are elevated in some patients. Although CLL B cells are known to express BBRs, a comprehensive and quantitative analysis of BBR levels and CLL B cell capacity to bind BAFF has not yet been done. We began this study by characterizing the level of soluble BAFF bound to freshly isolated CLL B cells, measured by both western blot analysis and flow cytometry. To assess receptor occupancy, cells were incubated with or without exogenous BAFF before assessing anti-BAFF reactivity and changes in median fluorescence intensity (ΔMFI; defined by dividing the MFI of the anti-BAFF antibody by the MFI of the isotype matched control antibody) were calculated. Normal B cells have higher detectable levels of bound BAFF with a ΔMFI ranging from 16 to 35 (mean=22.2). Upon addition of exogenous BAFF, the ΔMFI range increased to 27–96.6 (mean=49.1; n=8). Thus, despite evidence of prebound BAFF, clearly not all BBRs were occupied on normal PB B cells. By contrast, the levels of prebound BAFF on CLL B cells were significantly lower with a ΔMFI ranging from 1 to 13.1 (mean=2.7; n=36). Of note, 10/36 patients did not exhibit increased anti-BAFF reactivity upon incubation with exogenous BAFF (mean fold induction=0.8) whereas 26/36 patients displayed a mean fold induction of anti-BAFF reactivity of 3.5. These observations prompted us to next quantitate CLL B cell BBR expression. All patient CLL B cells expressed BAFF-R but at significantly lower levels than observed in normal B cells (p=0.0009). When CLL patients were categorized into IGHV mutated (M; n=22) and unmutated (UM; n=24), UM patients were observed to express higher levels of BAFF-R (ΔMFI =8.9) than M patients (ΔMFI =5.24). Regarding TACI, we previously demonstrated that normal memory B cells uniformly express TACI (ΔMFI =12.7; n=10) and there is a small population of activated naïve B cells that express TACI at lower levels (ΔMFI =8.3; n=10). In our CLL cohort, 14/22 M patients were TACI+ (ΔMFI =7.0) and 19/24 UM patients were TACI+ (ΔMFI =4.7). Finally, whereas normal PB B cells completely lack BCMA expression, 7/22 M and 4/22 UM patients expressed BCMA. Thus, using the BBR profile and analysis of expression levels relative to normal PB B cells, the following subgroups of B-CLL can be defined: BAFF-R+; BAFF-R/TACI+; BAFF-R/BCMA+; BAFF-R/TACI/BCMA+. It remains to be determined if these BBR profiles correlate with aspects of clinical disease. In addition, given the putative importance of BAFF in this disease, it is interesting to note that in general, CLL B cells display overall lower levels of prebound BAFF. Current studies are focused on determining whether this reflects CLL B cell activation status, increased competition for BAFF, and/or reduced levels of BBR expression.


2004 ◽  
Vol 22 (19) ◽  
pp. 3937-3949 ◽  
Author(s):  
Christian Haslinger ◽  
Norbert Schweifer ◽  
Stephan Stilgenbauer ◽  
Hartmut Döhner ◽  
Peter Lichter ◽  
...  

Purpose Genomic aberrations and mutational status of the immunoglobulin variable heavy chain (VH) gene have been shown to be among the most important predictors for outcome in patients with B-cell chronic lymphocytic leukemia (B-CLL). In this study, we report on differential gene expression patterns that are characteristic for genetically defined B-CLL subtypes. Materials and Methods One hundred genetically well-characterized B-CLL samples, together with 11 healthy control samples, were analyzed using oligonucleotide arrays, which test for the expression of some 12,000 human genes. Results Aiming at microarray-based subclassification, class predictors were constructed using sets of differentially expressed genes, which yielded in zero or low misclassification rates. Furthermore, a significant number of the differentially expressed genes clustered in chromosomal regions affected by the respective genomic losses/gains. Deletions affecting chromosome bands 11q22-q23 and 17p13 led to a reduced expression of the corresponding genes, such as ATM and p53, while trisomy 12 resulted in the upregulation of genes mapping to chromosome arm 12q. Using an unsupervised analysis algorithm, expression profiling allowed partitioning into predominantly VH-mutated versus unmutated patient groups; however, association of the expression profile with the VH mutational status could only be detected in male patients. Conclusion The finding that the most significantly differentially expressed genes are located in the corresponding aberrant chromosomal regions indicates that a gene dosage effect may exert a pathogenic role in B-CLL. The significant difference in the partitioning of male and female B-CLL samples suggests that the genomic signature for the VH mutational status might be sex-related.


Blood ◽  
2002 ◽  
Vol 99 (10) ◽  
pp. 3742-3747 ◽  
Author(s):  
Rainer Hubmann ◽  
Josef D. Schwarzmeier ◽  
Medhat Shehata ◽  
Martin Hilgarth ◽  
Markus Duechler ◽  
...  

Members of the Notch family encode transmembrane receptors that modulate differentiation, proliferation, and apoptotic programs of many precursor cells, including hematopoietic progenitors. Stimulation of Notch causes cleavage followed by translocation of the intracellular domain (NotchIC) to the nucleus, where it activates transcription of CBF1 responsive genes. The aim of this study was to elucidate the mechanisms leading to the overexpression of CD23, a striking feature of B-cell chronic lymphocytic leukemia (B-CLL) cells. By electrophoretic mobility shift assays, we identified a transcription factor complex (C1) that binds sequence specific to one known and 4 newly identified putative CBF1 recognition sites in the CD23a core promoter region. With the use of Epstein-Barr virus (EBV)–infected B cells as a model for CBF1 mediated CD23a expression, C1 was found to be EBV inducible. Supershift assays revealed that the nuclear form of Notch2 is a component of C1 in B-CLL cells, supporting a model in which NotchIC activates transcription by binding to CBF1 tethered to DNA. Transient transfection of REH pre–B cells with an activated form of Notch2 induced endogenous CD23a, confirming thatCD23a is a target gene of Notch2 signaling. Finally, reverse transcription-polymerase chain reaction and kinetic analysis demonstrated that the Notch2 oncogene is not only overexpressed in B-CLL cells but might also be related to the failure of apoptosis characteristic for this disease. In conclusion, these data suggest that deregulation of Notch2 signaling is involved in the aberrant expression of CD23 in B-CLL.


Blood ◽  
2002 ◽  
Vol 100 (10) ◽  
pp. 3749-3756 ◽  
Author(s):  
Gerd Munzert ◽  
Dieter Kirchner ◽  
Heike Stobbe ◽  
Lothar Bergmann ◽  
Roland M. Schmid ◽  
...  

B-cell chronic lymphocytic leukemia (B-CLL) is characterized by a resistance toward apoptosis-inducing agents. Nuclear factor-κB (NF-κB)/Rel has been shown to regulate the expression of antiapoptotic genes, such as members of the inhibitor of apoptosis protein (IAP) and tumor necrosis factor receptor-associated factor (TRAF) gene families. Expression and regulation of NF-κB/Rel–dependent inhibitors of apoptosis have not been collectively studied in B-CLL. We examined expression of known NF-κB/Rel–regulated antiapoptotic genes by RNAse protection assay, real-time polymerase chain reaction, and immunoblotting in patients with B-CLL. TRAF1 and to a lesser extent TRAF2 were overexpressed in B-CLL lymphocytes as compared with normal CD19+ B cells. TRAF1 overexpression did not correlate with markers of disease progression or overall survival. Furthermore, we found high constitutive expression of the IAP genes c-IAP-1, c-IAP-2, and XIAP both in normal and B-CLL lymphocytes. Focusing on the regulation of TRAF1, NF-κB/Rel activity in B-CLL nuclear extracts was shown to bind to TRAF1 promoter elements. However, IκB kinase (IKK) activity was not increased in CLL lymphocytes as compared with normal CD19+ B cells. The known IKK inhibitor sulfasalazine did not compromise TRAF1 expression. Thus, although our study revealed a common expression pattern of NF-κB/Rel–regulated inhibitors of apoptosis, our findings indicate an IKK-independent regulation of TRAF1 in B-CLL.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 1063-1070 ◽  
Author(s):  
Mohammad-Reza Rezvany ◽  
Mahmood Jeddi-Tehrani ◽  
Hans Wigzell ◽  
Anders Österborg ◽  
Håkan Mellstedt

Abstract T-cell receptor–B-variable (TCR-BV) gene usage and the CDR3 size distribution pattern were analyzed by reverse transcription–polymerase chain reaction (RT-PCR) in patients with B-cell chronic lymphocytic leukemia (B-CLL) to assess the T-cell repertoire. The use of TCR-BV families in CD4 and CD8 T cells stimulated with autologous activated leukemic cells was compared with that of freshly obtained blood T cells. Overexpression of individual TCR-BV families was found in freshly isolated CD4 and CD8 T cells. Polyclonal, oligoclonal, and monoclonal TCR-CDR3 patterns were seen within such overexpressed native CD4 and CD8 TCR-BV families. In nonoverexpressed TCR-BV families, monoclonal and oligoclonal populations were noted only within the CD8 subset. After in vitro stimulation of T cells with autologous leukemic B cells, analyses of the CDR3 length patterns showed that in expanded TCR-BV populations, polyclonal patterns frequently shifted toward a monoclonal/oligoclonal profile, whereas largely monoclonal patterns in native overexpressed TCR-BV subsets remained monoclonal. Seventy-five percent of CD8 expansions found in freshly obtained CD8 T cells further expanded on in vitro stimulation with autologous leukemic B cells. This suggests a memory status of such cells. In contrast, the unusually high frequency of CD4 T-cell expansions found in freshly isolated peripheral blood cells did not correlate positively to in vitro stimulation as only 1 of 9 expansions continued to expand. Our data suggest that leukemia cell–specific memory CD4 and CD8 T cells are present in vivo of patients with CLL and that several leukemia cell–associated antigens/epitopes are recognized by the patients' immune system, indicating that whole leukemia cells might be of preference for vaccine development.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2777-2783 ◽  
Author(s):  
Luisa Granziero ◽  
Paolo Ghia ◽  
Paola Circosta ◽  
Daniela Gottardi ◽  
Giuliana Strola ◽  
...  

Abstract In B-cell chronic lymphocytic leukemia (B-CLL), defective apoptosis causes the accumulation of mature CD5+ B cells in lymphoid organs, bone marrow (BM), and peripheral blood (PB). These cells are the progeny of a proliferating pool that feeds the accumulating compartment. The authors sought to determine which molecular mechanisms govern the proliferating pool, how they relate to apoptosis, and what the role is of the microenvironment. To begin to resolve these problems, the expression and modulation of the family of inhibitor of apoptosis proteins (IAPs) were investigated, with consideration given to the possibility that physiological stimuli, such as CD40 ligand (CD40L), available to B cells in the microenvironment, might modulate IAP expression. The in vitro data on mononuclear cells from PB or BM of 30 patients demonstrate that B-CLL cells on CD40 stimulation express Survivin and that Survivin is the only IAP whose expression is induced by CD40L. Through immunohistochemistry, in vivo Survivin expression in lymph node (LN) and BM biopsies was evaluated. In reactive LN, Survivin was detected only in highly proliferating germinal center cells. In LN from patients with B-CLL, Survivin was detected only in pseudofollicles. Pseudofollicle Survivin+ cells were actively proliferating and, in contrast to Survivin+ B cells found in normal GC, were Bcl-2+. In B-CLL BM biopsies, CD5+, Survivin+ cells were observed in clusters interspersed with T cells. These findings establish that Survivin controls the B-CLL proliferative pool interfacing apoptosis and that its expression may be modulated by microenvironmental stimuli.


Sign in / Sign up

Export Citation Format

Share Document