Transmission of high-frequency vocalizations from hummingbirds living in diverse habitats

2020 ◽  
Vol 132 (1) ◽  
pp. 148-160
Author(s):  
F G Duque ◽  
C A Rodriguez-Saltos ◽  
M F Monteros ◽  
W Wilczynski

Abstract Some species of Andean hummingbirds produce high-frequency vocalizations which exceed the vocal range of most birds. They also challenge our understanding of the role of habitat structure in the evolution of vocal signals because these hummingbirds live in strikingly different habitats, ranging from cloud forest to high-altitude grasslands. Although these vocalizations are produced at high frequencies, they exhibit considerable variation in frequency content and temporal structure. The calls of the hummingbirds from the cloud forest are simpler and have a narrow frequency range compared to the complex song of the grasslands hummingbird. We hypothesized that each of the three high-frequency vocalizations is adapted for transmission in their habitat. We characterized the transmission of high-frequency vocal signals in the cloud forest and in the grasslands. All vocalizations attenuated and degraded substantially at short distances, suggesting that they are adapted for short-range communication. The simple vocalizations of the cloud-forest species transmitted better in both environments compared to the complex song of the grasslands hummingbird, probably due to relaxed constraints for high-frequency sounds in open habitats.

2002 ◽  
Vol 88 (2) ◽  
pp. 861-868 ◽  
Author(s):  
Steven D. Buckingham ◽  
Andrew N. Spencer

Certain neurons of vertebrates are specialized for high-frequency firing. Interestingly, high-frequency firing is also seen in central neurons in basal bilateral metazoans. Recently, the role of potassium currents with rightward-shifted activation curves in producing high-frequency firing has come under scrutiny. We apply intracellular recording, patch-clamp techniques, and compartmental modeling to examine the roles of rightward-shifted potassium currents in repetitive firing and shaping of action potentials in central neurons of the flatworm, Notoplana atomata ( Phylum Platyhelminthes). The kinetic properties of potassium and sodium currents were determined from patch-clamp experiments on dissociated brain cells. To predict the effects of changing the steady-state and kinetic properties of these potassium currents, these data were incorporated into a computer model of a 30-μm spherical cell with the levels of current adjusted to approximate the values recorded in voltage-clamp experiments. The model was able to support regenerative spikes at high frequencies in response to injected current. Current-clamp recordings of cultured cells and of neurons in situ also showed evidence of very-high-frequency firing. Adjusting the ratio of inactivating to non-inactivating potassium currents had little effect upon the firing pattern of the cell or its ability to fire at high frequencies, whereas the presence of the non-inactivating current was necessary for repetitive firing. Computer simulations suggested that the rightward shift in voltage sensitivity confers a raised firing threshold, while rapid channel kinetics underlie high frequency firing, and the large activation range enhances the coding range of the cell.


2019 ◽  
Vol 85 (1(I)) ◽  
pp. 64-71 ◽  
Author(s):  
M. M. Gadenin

The cycle configuration at two-frequency loading regimes depends on the number of parameters including the absolute values of the frequencies and amplitudes of the low-frequency and high-frequency loads added during this mode, the ratio of their frequencies and amplitudes, as well as the phase shift between these harmonic components, the latter having a significant effect only with a small ratio of frequencies. Presence of such two-frequency regimes or service loading conditions for parts of machines and structures schematized by them can significantly reduce their endurance. Using the results of experimental studies of changes in the endurance of a two-frequency loading of specimens of cyclically stable, cyclically softened and cyclically hardened steels under rigid conditions we have shown that decrease in the endurance under the aforementioned conditions depends on the ratio of frequencies and amplitudes of operation low-frequency low-cycle and high-frequency vibration stresses, and, moreover, the higher the level of the ratios of amplitudes and frequencies of those stacked harmonic processes of loading the greater the effect. It is shown that estimation of such a decrease in the endurance compared to a single frequency loading equal in the total stress (strains) amplitudes can be carried out using an exponential expression coupling those endurances through a parameter (reduction factor) containing the ratio of frequencies and amplitudes of operation cyclic loads and characteristic of the material. The reduction is illustrated by a set of calculation-experimental curves on the corresponding diagrams for each of the considered types of materials and compared with the experimental data.


AI & Society ◽  
2021 ◽  
Author(s):  
Frank Förster ◽  
Kaspar Althoefer

AbstractThe false attribution of autonomy and related concepts to artificial agents that lack the attributed levels of the respective characteristic is problematic in many ways. In this article, we contrast this view with a positive viewpoint that emphasizes the potential role of such false attributions in the context of robotic language acquisition. By adding emotional displays and congruent body behaviors to a child-like humanoid robot’s behavioral repertoire, we were able to bring naïve human tutors to engage in so called intent interpretations. In developmental psychology, intent interpretations can be hypothesized to play a central role in the acquisition of emotion, volition, and similar autonomy-related words. The aforementioned experiments originally targeted the acquisition of linguistic negation. However, participants produced other affect- and motivation-related words with high frequencies too and, as a consequence, these entered the robot’s active vocabulary. We will analyze participants’ non-negative emotional and volitional speech and contrast it with participants’ speech in a non-affective baseline scenario. Implications of these findings for robotic language acquisition in particular and artificial intelligence and robotics more generally will also be discussed.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Christiaan P. J. de Kock ◽  
Jean Pie ◽  
Anton W. Pieneman ◽  
Rebecca A. Mease ◽  
Arco Bast ◽  
...  

AbstractDiversity of cell-types that collectively shape the cortical microcircuit ensures the necessary computational richness to orchestrate a wide variety of behaviors. The information content embedded in spiking activity of identified cell-types remain unclear to a large extent. Here, we recorded spike responses upon whisker touch of anatomically identified excitatory cell-types in primary somatosensory cortex in naive, untrained rats. We find major differences across layers and cell-types. The temporal structure of spontaneous spiking contains high-frequency bursts (≥100 Hz) in all morphological cell-types but a significant increase upon whisker touch is restricted to layer L5 thick-tufted pyramids (L5tts) and thus provides a distinct neurophysiological signature. We find that whisker touch can also be decoded from L5tt bursting, but not from other cell-types. We observed high-frequency bursts in L5tts projecting to different subcortical regions, including thalamus, midbrain and brainstem. We conclude that bursts in L5tts allow accurate coding and decoding of exploratory whisker touch.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gotthold Fläschner ◽  
Cosmin I. Roman ◽  
Nico Strohmeyer ◽  
David Martinez-Martin ◽  
Daniel J. Müller

AbstractUnderstanding the viscoelastic properties of living cells and their relation to cell state and morphology remains challenging. Low-frequency mechanical perturbations have contributed considerably to the understanding, yet higher frequencies promise to elucidate the link between cellular and molecular properties, such as polymer relaxation and monomer reaction kinetics. Here, we introduce an assay, that uses an actuated microcantilever to confine a single, rounded cell on a second microcantilever, which measures the cell mechanical response across a continuous frequency range ≈ 1–40 kHz. Cell mass measurements and optical microscopy are co-implemented. The fast, high-frequency measurements are applied to rheologically monitor cellular stiffening. We find that the rheology of rounded HeLa cells obeys a cytoskeleton-dependent power-law, similar to spread cells. Cell size and viscoelasticity are uncorrelated, which contrasts an assumption based on the Laplace law. Together with the presented theory of mechanical de-embedding, our assay is generally applicable to other rheological experiments.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 784
Author(s):  
Shinji Okaniwa

The most important role of ultrasound (US) in the management of gallbladder (GB) lesions is to detect lesions earlier and differentiate them from GB carcinoma (GBC). To avoid overlooking lesions, postural changes and high-frequency transducers with magnified images should be employed. GB lesions are divided into polypoid lesions (GPLs) and wall thickening (GWT). For GPLs, classification into pedunculated and sessile types should be done first. This classification is useful not only for the differential diagnosis but also for the depth diagnosis, as pedunculated carcinomas are confined to the mucosa. Both rapid GB wall blood flow (GWBF) and the irregularity of color signal patterns on Doppler imaging, and heterogeneous enhancement in the venous phase on contrast-enhanced ultrasound (CEUS) suggest GBC. Since GWT occurs in various conditions, subdividing into diffuse and focal forms is important. Unlike diffuse GWT, focal GWT is specific for GB and has a higher incidence of GBC. The discontinuity and irregularity of the innermost hyperechoic layer and irregular or disrupted GB wall layer structure suggest GBC. Rapid GWBF is also useful for the diagnosis of wall-thickened type GBC and pancreaticobiliary maljunction. Detailed B-mode evaluation using high-frequency transducers, combined with Doppler imaging and CEUS, enables a more accurate diagnosis.


2019 ◽  
Vol 31 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Alison C. Cleary ◽  
Maria C. Casas ◽  
Edward G. Durbin ◽  
Jaime Gómez-Gutiérrez

AbstractThe keystone role of Antarctic krill,Euphausia superbaDana, in Southern Ocean ecosystems, means it is essential to understand the factors controlling their abundance and secondary production. One such factor that remains poorly known is the role of parasites. A recent study of krill diet using DNA analysis of gut contents provided a snapshot of the parasites present within 170E. superbaguts in a small area along the West Antarctic Peninsula. These parasites includedMetschnikowiaspp. fungi,Haptoglossasp. peronosporomycetes,LankesteriaandParalecudinaspp. apicomplexa,Stegophorussp. nematodes, andPseudocolliniaspp. ciliates. Of these parasites,Metschnikowiaspp. fungi andPseudocolliniaspp. ciliates had previously been observed inE. superba, as had other genera of apicomplexans, though notLankesteriaandParalecudina.In contrast, nematodes had previously only been observed in eggs ofE. superba, and there are no literature reports of peronosporomycetes in euphausiids.Pseudocolliniaspp., parasitoids which obligately kill their host, were the most frequently observed infection, with a prevalence of 12%. The wide range of observed parasites and the relatively high frequency of infections suggest parasites may play a more important role than previously acknowledged inE. superbaecology and population dynamics.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Reuben Howden ◽  
Eva Gougian ◽  
Marcus Lawrence ◽  
Samantha Cividanes ◽  
Wesley Gladwell ◽  
...  

Nrf2protects the lung from adverse responses to oxidants, including 100% oxygen (hyperoxia) and airborne pollutants like particulate matter (PM) exposure, but the role ofNrf2on heart rate (HR) and heart rate variability (HRV) responses is not known. We hypothesized that genetic disruption ofNrf2would exacerbate murine HR and HRV responses to severe hyperoxia or moderate PM exposures.Nrf2-/-andNrf2+/+mice were instrumented for continuous ECG recording to calculate HR and HRV (low frequency (LF), high frequency (HF), and total power (TP)). Mice were then either exposed to hyperoxia for up to 72 hrs or aspirated with ultrafine PM (UF-PM). Compared to respective controls, UF-PM induced significantly greater effects on HR (P<0.001) and HF HRV (P<0.001) inNrf2-/-mice compared toNrf2+/+mice.Nrf2-/-mice tolerated hyperoxia significantly less thanNrf2+/+mice (~22 hrs;P<0.001). Reductions in HR, LF, HF, and TP HRV were also significantly greater inNrf2-/-compared toNrf2+/+mice (P<0.01). Results demonstrate thatNrf2deletion increases susceptibility to change in HR and HRV responses to environmental stressors and suggest potential therapeutic strategies to prevent cardiovascular alterations.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Norahayu Othman ◽  
Noor Hasima Nagoor

Lung cancer remains to be one of the most common and serious types of cancer worldwide. While treatment is available, the survival rate of this cancer is still critically low due to late stage diagnosis and high frequency of drug resistance, thus highlighting the pressing need for a greater understanding of the molecular mechanisms involved in lung carcinogenesis. Studies in the past years have evidenced that microRNAs (miRNAs) are critical players in the regulation of various biological functions, including apoptosis, which is a process frequently evaded in cancer progression. Recently, miRNAs were demonstrated to possess proapoptotic or antiapoptotic abilities through the targeting of oncogenes or tumor suppressor genes. This review examines the involvement of miRNAs in the apoptotic process of lung cancer and will also touch on the promising evidence supporting the role of miRNAs in regulating sensitivity to anticancer treatment.


Sign in / Sign up

Export Citation Format

Share Document