scholarly journals CTLA4 blockade elicits paraneoplastic neurological disease in a mouse model

Brain ◽  
2016 ◽  
Vol 139 (11) ◽  
pp. 2923-2934 ◽  
Author(s):  
Lidia M. Yshii ◽  
Christina M. Gebauer ◽  
Béatrice Pignolet ◽  
Emilie Mauré ◽  
Clémence Quériault ◽  
...  
2017 ◽  
Vol 6 (2) ◽  
pp. e1260212 ◽  
Author(s):  
Christina Gebauer ◽  
Béatrice Pignolet ◽  
Lidia Yshii ◽  
Emilie Mauré ◽  
Jan Bauer ◽  
...  

2006 ◽  
Vol 12 (4) ◽  
pp. 241-250 ◽  
Author(s):  
Meryll Corbin ◽  
Susan Pourciau ◽  
Timothy Morgan ◽  
Marc Boudreaux ◽  
Karin Peterson

2020 ◽  
Author(s):  
John R Sinnamon ◽  
Susan Y Kim ◽  
Jenna R Fisk ◽  
Zhen Song ◽  
Hiroyuki Nakai ◽  
...  

AbstractRNA base editing is gaining momentum as an approach to repair mutations, but its application to neurological disease has not been established. We have succeeded in directed transcript editing of a pathological mutation in a mouse model of the neurodevelopmental disease, Rett syndrome. Specifically, we directed editing of a guanosine to adenosine mutation in RNA encoding Methyl CpG Binding Protein 2 (MECP2). Repair was mediated by injecting the hippocampus of juvenile Rett mice with an adeno-associated virus expressing both an engineered enzyme containing the catalytic domain of Adenosine Deaminase Acting on RNA 2 and a Mecp2 targeting guide. After one month, 50% of Mecp2 RNA was recoded in three different hippocampal neuronal subtypes, and the ability of MeCP2 protein to associate with heterochromatin was similarly restored to 50% of wild-type levels. This study represents the first in vivo programmable RNA editing applied to a model of neurological disease.


2020 ◽  
Author(s):  
Mariah Hassert ◽  
Stephen Scroggins ◽  
Abigail K. Coleman ◽  
Enbal Shacham ◽  
James D. Brien ◽  
...  

ABSTRACTThe 2015/16 Zika virus epidemic in South and Central America left the scientific community urgently trying to understand the disease and the factors which modulate Zika virus pathogenesis. Multiple other flaviviruses are endemic in areas where Zika virus emerged in 2015/16. Therefore, it is hypothesized that a key to understanding how Zika virus infection and disease progresses, is to study Zika virus infection in the context of prior flavivirus exposure. Humans and animal studies have highlighted the idea that having been previously exposed to a heterologous flavivirus may modulate the immune response to Zika virus. However, it is still unclear 1) how this impacts viral burden and pathology, and 2) the factors which correlate with the multiple metrics of disease. In this murine study, we longitudinally examine multiple factors involved in Zika disease, linking viral burden over time with increased neurological disease severity and weight loss. We show that prior heterologous flavivirus exposure with dengue virus type 2 or 3, or the vaccine strain of yellow fever, provides protection from mortality in a lethal Zika challenge. Reduction in viral burden and Zika disease in the context of prior flavivirus exposure varies depending on the infecting primary virus; with primary Zika infection being most protective from Zika challenge, followed by dengue 2, yellow fever, and dengue 3. This study demonstrates a protective effect of prior heterologous flavivirus exposure on Zika virus pathogenesis, and defines the relationship between prior flavivirus exposure and the potential for Zika virus disease.IMPORTANCEThe emergence and re-emergence of various vector-borne diseases in recent years highlights the need to understand the mechanisms of protection for each pathogen. In this study, we investigated the impact of prior exposure to Zika, dengue serotypes 2, 3, and the vaccine strain of yellow fever on pathogenesis and disease outcomes in a mouse model of Zika virus infection. We found that prior exposure to a heterologous flavivirus was protective from mortality, neurological disease, weight loss, and severe viral burden during a lethal Zika challenge. Using a longitudinal study design, we were able to link multiple disease parameters including viral burden over time with neurological disease severity and weight loss in the context of heterologous infection. This study demonstrates a role for heterologous flavivirus exposure in modulating flavivirus pathophysiology. Given the cyclic nature of most flavivirus outbreaks, this work will contribute to the forecasting of disease severity for future outbreaks.


Author(s):  
H. D. Geissinge ◽  
L.D. Rhodes

A recently discovered mouse model (‘mdx’) for muscular dystrophy in man may be of considerable interest, since the disease in ‘mdx’ mice is inherited by the same mode of inheritance (X-linked) as the human Duchenne (DMD) muscular dystrophy. Unlike DMD, which results in a situation in which the continual muscle destruction cannot keep up with abortive regenerative attempts of the musculature, and the sufferers of the disease die early, the disease in ‘mdx’ mice appears to be transient, and the mice do not die as a result of it. In fact, it has been reported that the severely damaged Tibialis anterior (TA) muscles of ‘mdx’ mice seem to display exceptionally good regenerative powers at 4-6 weeks, so much so, that these muscles are able to regenerate spontaneously up to their previous levels of physiological activity.


1998 ◽  
Vol 13 (11-s4) ◽  
pp. S178-S184 ◽  
Author(s):  
PETER KONTUREK ◽  
TOMASZ BRZOZOWSKI ◽  
STANISLAW KONTUREK ◽  
ELZBIETA KARCZEWSKA ◽  
ROBERT PAJDO ◽  
...  

Author(s):  
Albert Hofman ◽  
Richard Mayeux
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document