scholarly journals miR-544ainduces epithelial–mesenchymal transition through the activation of WNT signaling pathway in gastric cancer

2015 ◽  
Vol 36 (11) ◽  
pp. 1363-1371 ◽  
Author(s):  
Yoshimitsu Yanaka ◽  
Tomoki Muramatsu ◽  
Hiroyuki Uetake ◽  
Ken-ichi Kozaki ◽  
Johji Inazawa
2019 ◽  
Vol 10 (1) ◽  
pp. 191-202 ◽  
Author(s):  
Bornita Das ◽  
Dona Sinha

DADS reflected the potential of reversal of FN-induced EMT by inhibition of Wnt signaling in A549 lung cancer cells.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 555 ◽  
Author(s):  
Yunpeng Bai ◽  
Jingjing Sha ◽  
Takahiro Kanno

As oral squamous cell carcinoma (OSCC) can develop from potentially malignant disorders (PMDs), it is critical to develop methods for early detection to improve the prognosis of patients. Epithelial–mesenchymal transition (EMT) plays an important role during tumor progression and metastasis. The Wnt signaling pathway is an intercellular pathway in animals that also plays a fundamental role in cell proliferation and regeneration, and in the function of many cell or tissue types. Specific components of master regulators such as epithelial cadherin (E-cadherin), Vimentin, adenomatous polyposis coli (APC), Snail, and neural cadherin (N-cadherin), which are known to control the EMT process, have also been implicated in the Wnt cascade. Here, we review recent findings on the Wnt signaling pathway and the expression mechanism. These regulators are known to play roles in EMT and tumor progression, especially in OSCC. Characterizing the mechanisms through which both EMT and the Wnt pathway play a role in these cellular pathways could increase our understanding of the tumor genesis process and may allow for the development of improved therapeutics for OSCC.


2017 ◽  
Vol 37 (5) ◽  
Author(s):  
Jiu-Jiang Wang ◽  
Zhi-Feng Li ◽  
Xiao-Jing Li ◽  
Zhao Han ◽  
Ling Zhang ◽  
...  

The study aims to evaluate the effects of miR-136 on the proliferation, apoptosis, and epithelial–mesenchymal transition (EMT) of melanoma cells by targetting premelanosome protein (PMEL) through the Wnt signaling pathway. After establishment of melanoma mouse models, melanoma (model group) and normal tissues (normal group) were collected. Immunohistochemistry was performed to determine PMEL protein concentration. Mouse melanoma cells were assigned into control, blank, negative control (NC), miR-136 mimics, miR-136 inhibitors, siRNA-PMEL, and miR-136 inhibitors + siRNA-PMEL, LiC1 (Wnt signaling pathway activator), and siRNA-PMEL+ LiCl groups. MTT, Scratch test, Transwell assay, and flow cytometry were performed to measure cell proliferation, migration, invasion, and apoptosis. Quantitative real-time PCR (qRT-PCR) and Western blotting were performed to evaluate miR-136, PMEL, β-catenin, Wnt3a, Bcl-2, Bax, Caspase, E-cadherin, and N-cadherin expressions. PMEL is highly expressed in melanoma tissues. MiR-136, Bax, Caspase, and E-cadherin expressions decreased in the model group, whereas PMEL, β-catenin, Bcl-2, Wnt3a, and N-cadherin expressions increased. Bax, Caspase, and E-cadherin expressions increased in the miR-136 mimics and siRNA-PMEL groups, whereas the expressions decreased in the miR-136 inhibitors group and LiC1 group. PMEL, β-catenin, Bcl-2, Wnt3a, and N-cadherin expressions, cell proliferation, migration, and invasion decreased, and the apoptosis rate inceased in the miR-136 mimics and siRNA-PMEL groups; whereas the tendencies were opposite to those in the miR-136 inhibitors group and LiC1 group. In the siRNA-PMEL+ LiCl group, PMEL expression decreased. These findings indicated that overexpression of miR-136 inhibits melanoma cell EMT, proliferation, migration, invasion, and promotes apoptosis by targetting PMEL through down-regulation of the Wnt signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document