scholarly journals Rearing Environment and Longitudinal Brain Development in the Pig

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 903-903
Author(s):  
Joanne Fil ◽  
Sangyun Joung ◽  
Courtney Hayes ◽  
Ryan N Dilger

Abstract Objectives Artificial rearing of pigs provides a number of advantages over conventional rearing (i.e., true maternal care), including careful control of nutrient intake and environment conditions. Yet there remains a gap in knowledge when comparing brain development between sow-reared and artificially-reared domestic pigs. Thus, our research sought to model brain development and assess recognition memory in a longitudinal manner by directly comparing rearing environments. Methods Forty-four intact (i.e., not castrated) male pigs were artificially-reared or sow-reared from postnatal day 2 until postnatal week 4. After postnatal week 4, all pigs were housed in a group setting within the same environment until postnatal week 24. Magnetic resonance imaging was conducted on pigs at 8 longitudinal time-points to model developmental trajectories of brain macrostrutural and microstructural outcomes. Additionally, pigs behavior were tested using the novel object recognition task at postnatal weeks 4 and 8. Results Throughout the 24-week study, no differences between rearing groups were noted in weekly body weights, average growth and feed intake patterns, or feed efficiency. Whole brain, grey matter, white matter, and cerebrospinal fluid growth patterns also did not differ between pigs assigned to different early-life rearing environments. Moreover, minimal differences in regional absolute volumes and fractional anisotropy developmental trajectories were identified, though artificially-reared pigs exhibited higher initial rates of myelination in multiple brain regions compared with sow-reared pigs. Furthermore, behavioral assessment at both PNW 4 and 8 suggested little influence of rearing environment on recognition memory, however, an age-dependent increase in object recognition memory was observed in the sow-reared group. Conclusions Our findings suggest that early-life rearing environment has little influence on brain growth trajectories and behavior in the domestic pig. Artificial rearing may promote maturation in certain brain areas but does not appear to elicit long-term effects in outcomes including brain structure or behavior. Funding Sources The study was funded by Société des Produits Nestlé SA.

2021 ◽  
Vol 15 ◽  
Author(s):  
Joanne E. Fil ◽  
Sangyun Joung ◽  
Courtney A. Hayes ◽  
Ryan N. Dilger

IntroductionOver the last 40 years, the domestic pig has emerged as a prominent preclinical model as this species shares similarities with humans with regard to immunity, gastrointestinal physiology, and neurodevelopment. Artificial rearing of pigs provides a number of advantages over conventional rearing (i.e., true maternal care), including careful control of nutrient intake and environment conditions. Yet there remains a gap in knowledge when comparing brain development between sow-reared and artificially reared domestic pigs. Thus, our research sought to model brain development and assess recognition memory in a longitudinal manner by directly comparing rearing environments.MethodsForty-four intact (i.e., not castrated) male pigs were artificially reared or sow-reared from postnatal day 2 until postnatal week 4. After postnatal week 4, all pigs were housed in a group setting within the same environment until postnatal week 24. Magnetic resonance imaging was conducted on pigs at 8 longitudinal time-points to model developmental trajectories of brain macrostructural and microstructural outcomes. Additionally, pigs behavior were tested using the novel object recognition task at postnatal weeks 4 and 8.ResultsThroughout the 24-week study, no differences between rearing groups were noted in weekly body weights, average growth and feed intake patterns, or feed efficiency. Whole brain, gray matter, white matter, and cerebrospinal fluid growth patterns also did not differ between pigs assigned to different early-life rearing environments. Moreover, minimal differences in regional absolute volumes and fractional anisotropy developmental trajectories were identified, though artificially reared pigs exhibited higher initial rates of myelination in multiple brain regions compared with sow-reared pigs. Furthermore, behavioral assessment at both PNW 4 and 8 suggested little influence of rearing environment on recognition memory, however, an age-dependent increase in object recognition memory was observed in the sow-reared group.ConclusionOur findings suggest that early-life rearing environment influences the rate of development in some brain regions but has little influence on overall brain growth and object recognition memory and exploratory behaviors in the domestic pig. Artificial rearing may promote maturation in certain brain areas but does not appear to elicit long-term effects in outcomes including brain structure or object recognition memory.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2486
Author(s):  
Joanne E. Fil ◽  
Sangyun Joung ◽  
Jonas Hauser ◽  
Andreas Rytz ◽  
Courtney A. Hayes ◽  
...  

Polar lipids, which are found in human milk, serve essential functions within biological membranes, hence their importance in brain development and cognition. Therefore, we aimed to evaluate the longitudinal effects on brain macrostructural and microstructural development and recognition memory of early-life polar lipid supplementation using the translational pig model. Twenty-eight intact (i.e., not castrated) male pigs were provided either a control diet (n = 14) or the control diet supplemented with polar lipids (n = 14) from postnatal day 2 until postnatal week 4. After postnatal week 4, all animals were provided the same nutritionally-adequate diets until postnatal week 24. Pigs underwent magnetic resonance imaging at 8 longitudinal time-points to model brain macrostructural and microstructural developmental trajectories. The novel object recognition task was implemented at postnatal weeks 4 and 8 to evaluate recognition memory. Subtle differences were observed between groups in hippocampal absolute brain volumes and fractional anisotropy, and no differences in myelin water fraction developmental patterns were noted. Behavioral outcomes did not differ in recognition memory, and only minimal differences were observed in exploratory behaviors. Our findings suggest that early-life dietary supplementation of polar lipids has limited effect on brain developmental patterns, object recognition memory, and exploratory behaviors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kate McGrath ◽  
Laura Sophia Limmer ◽  
Annabelle-Louise Lockey ◽  
Debbie Guatelli-Steinberg ◽  
Donald J. Reid ◽  
...  

AbstractEarly life stress disrupts growth and creates horizontal grooves on the tooth surface in humans and other mammals, yet there is no consensus for their quantitative analysis. Linear defects are considered to be nonspecific stress indicators, but evidence suggests that intermittent, severe stressors create deeper defects than chronic, low-level stressors. However, species-specific growth patterns also influence defect morphology, with faster-growing teeth having shallower defects at the population level. Here we describe a method to measure the depth of linear enamel defects and normal growth increments (i.e., perikymata) from high-resolution 3D topographies using confocal profilometry and apply it to a diverse sample of Homo neanderthalensis and H. sapiens anterior teeth. Debate surrounds whether Neanderthals exhibited modern human-like growth patterns in their teeth and other systems, with some researchers suggesting that they experienced more severe childhood stress. Our results suggest that Neanderthals have shallower features than H. sapiens from the Upper Paleolithic, Neolithic, and medieval eras, mirroring the faster growth rates in Neanderthal anterior teeth. However, when defect depth is scaled by perikymata depth to assess their severity, Neolithic humans have less severe defects, while Neanderthals and the other H. sapiens groups show evidence of more severe early life growth disruptions.


2021 ◽  
Vol 187 ◽  
pp. 108493
Author(s):  
Gerardo Ramirez-Mejia ◽  
Elvi Gil-Lievana ◽  
Oscar Urrego-Morales ◽  
Ernesto Soto-Reyes ◽  
Federico Bermúdez-Rattoni

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Valerie A. I. Natale ◽  
Tim J. Cole ◽  
Cynthia Rothblum-Oviatt ◽  
Jennifer Wright ◽  
Thomas O. Crawford ◽  
...  

Abstract Background Ataxia telangiectasia (A-T) is a DNA repair disorder that affects multiple body systems. Neurological problems and immunodeficiency are two important features of this disease. At this time, two main severity groups are defined in A-T: classic (the more severe form) and mild. Poor growth is a common problem in classic A-T. An objective of this study was to develop growth references for classic A-T. Another objective was to compare growth patterns in classic A-T and mild A-T with each other and with the general population, using the CDC growth references. A final objective was to examine the effects of chronic infection on height. Results We found that classic A-T patients were smaller overall, and suffered from height and weight faltering that continued throughout childhood and adolescence. When compared to the CDC growth references, the median heights and weights for both male and female patients eventually fell to or below the 3rd centile on the CDC charts. Height faltering was more pronounced in females. Birthweight was lower in the classic A-T group compared to mild A-T and the general population, whereas birth length was not. Finally, we investigated height and BMI faltering in relation to number of infections and found no association. Conclusions Classic A-T appears to affect growth in utero. Although children appear to grow well in very early life, faltering begins early, and is unrelenting.


2010 ◽  
Vol 207 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Patricia Jurado-Berbel ◽  
David Costa-Miserachs ◽  
Meritxell Torras-Garcia ◽  
Margalida Coll-Andreu ◽  
Isabel Portell-Cortés

2012 ◽  
Vol 88 (4) ◽  
pp. 385-391 ◽  
Author(s):  
Luciana Estefani Drumond ◽  
Flávio Afonso Gonçalves Mourão ◽  
Hércules Ribeiro Leite ◽  
Renata Viana Abreu ◽  
Helton José Reis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document