scholarly journals Gastrointestinal Symptoms Related to Potato Ingestion During Cycling in Trained Athletes (P23-012-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Susannah Scaroni ◽  
Amadeo Salvador ◽  
Colleen McKenna ◽  
Rafael Alamilla ◽  
Isabel Martinez ◽  
...  

Abstract Objectives Carbohydrate (CHO) ingestion is an established nutritional strategy to improve endurance performance, yet currently available products may contribute to gastrointestinal (GI) distress. Potatoes have a high-glycemic index, indicating that their CHO content is readily available. We aimed to compare the effects of ingesting potato purée (POT), commercial CHO gel (GEL), or a control (water, CTL) during cycling on GI Symptoms and affective indices in trained athletes. Methods In a randomized crossover study, twelve trained cyclists (9 M and 3F; 30.5 ± 8.7y; 70.6 ± 7.6 kg; 1.70 ± 7 cm; 60.7 ± 8.9 mL/kg/min) completed a 2 h cycling challenge (60–85%VO2max) followed by a 6 kJ/kg time trial. Cyclists were randomly assigned to consume POT, GEL, or CTL during the challenge. Rating of perceived exertion (RPE), GI symptoms, and affective responses (Feeling Scale −5/+5) were collected throughout the challenge via visual analog scales. Differences between treatments were assessed by mixed model analysis of variance using time and condition as a fixed factor and subject as a random factor. All data represent mean ± standard deviation. Results RPE was not different between POT, GEL, or CTL condition at the end of the cycling challenge (POT: 17 ± 1; GEL: 17 ± 1, CTL: 18 ± 1, P > 0.05). Higher GI symptoms (P < 0.01) were observed at the end of the challenge during POT condition (15 ± 3%) when compared to GEL (8 ± 3%) and CTL (7 ± 3%), with no significant difference in these symptoms prior to this time. FS response significantly increased (P = 0.04) during POT trial (2 ± 2) compared to GEL (0 ± 0.2) and CTL (0 ± 2) conditions at end of the challenge. Conclusions While POT ingestion resulted in greater GI distressed compared to CHO gel, cyclists perceived the exertion to be similar and even reported feeling more pleasant after POT ingestion in endurance exercise. Funding Sources Alliance for Potato Research and Education.

Author(s):  
Pedro L. Valenzuela ◽  
Jaime Gil-Cabrera ◽  
Eduardo Talavera ◽  
Lidia B. Alejo ◽  
Almudena Montalvo-Pérez ◽  
...  

Purpose: To compare the effectiveness of resistance power training (RPT, training with the individualized load and repetitions that maximize power output) and cycling power training (CPT, short sprint training) in professional cyclists. Methods: The participants (20 [2] y, peak oxygen uptake 78.0 [4.4] mL·kg−1·min−1) were randomly assigned to perform CPT (n = 8) or RPT (n = 10) in addition to their usual training regime for 7 weeks (2 sessions/wk). The training loads were continuously registered using the session rating of perceived exertion. The outcomes included endurance performance (8-min time trial and incremental test), as well as measures of muscle strength/power (1-repetition maximum and mean maximum propulsive power on the squat, hip thrust, and lunge exercises) and body composition (assessed by dual-energy X-ray absorptiometry). Results: No between-group differences were found for training loads or for any outcome (P > .05). Both interventions resulted in increased time-trial performance, as well as in improvements in other endurance-related outcomes (ie, ventilatory threshold, respiratory compensation point; P < .05). A significant or quasi-significant increase (P = .068 and .047 for CPT and RPT, respectively) in bone mineral content was observed after both interventions. A significant reduction in fat mass (P = .017), along with a trend (P = .059) toward a reduced body mass, was observed after RPT, but not CPT (P = .076 for the group × time interaction effect). Significant benefits (P < .05) were also observed for most strength-related outcomes after RPT, but not CPT. Conclusion: CPT and RPT are both effective strategies for the improvement of endurance performance and bone health in professional cyclists, although the latter tends to result in greater improvements in body composition and muscle strength/power.


2010 ◽  
Vol 108 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Alexis R. Mauger ◽  
Andrew M. Jones ◽  
Craig A. Williams

To establish whether acetaminophen improves performance of self-paced exercise through the reduction of perceived pain, 13 trained male cyclists performed a self-paced 10-mile (16.1 km) cycle time trial (TT) following the ingestion of either acetaminophen (ACT) or a placebo (PLA), administered in randomized double-blind design. TT were completed in a significantly faster time ( t12 = 2.55, P < 0.05) under the ACT condition (26 min 15 s ± 1 min 36 s vs. 26 min 45 s ± 2 min 2 s). Power output (PO) was higher during the middle section of the TT in the ACT condition, resulting in a higher mean PO ( P < 0.05) (265 ± 12 vs. 255 ± 15 W). Blood lactate concentration (B[La]) and heart rate (HR) were higher in the ACT condition (B[La] = 6.1 ± 2.9 mmol/l; HR = 87 ± 7%max) than in the PLA condition (B[La] = 5.1 ± 2.6 mmol/l; HR = 84 ± 9%max) ( P < 0.05). No significant difference in rating of perceived exertion (ACT = 15.5 ± 0.2; PLA = 15.7 ± 0.2) or perceived pain (ACT = 5.6 ± 0.2; PLA = 5.5 ± 0.2) ( P > 0.05) was observed. Using acetaminophen, participants cycled at a higher mean PO, with an increased HR and B[La], but without changes in perceived pain or exertion. Consequently, completion time was significantly faster. These findings support the notion that exercise is regulated by pain perception, and increased pain tolerance can improve exercise capacity.


Author(s):  
John L. Ivy ◽  
Lynne Kammer ◽  
Zhenping Ding ◽  
Bei Wang ◽  
Jeffrey R. Bernard ◽  
...  

Context:Not all athletic competitions lend themselves to supplementation during the actual event, underscoring the importance of preexercise supplementation to extend endurance and improve exercise performance. Energy drinks are composed of ingredients that have been found to increase endurance and improve physical performance.Purpose:The purpose of the study was to investigate the effects of a commercially available energy drink, ingested before exercise, on endurance performance.Methods:The study was a double-blind, randomized, crossover design. After a 12-hr fast, 6 male and 6 female trained cyclists (mean age 27.3 ± 1.7 yr, mass 68.9 ± 3.2 kg, and VO2 54.9 ± 2.3 ml · kg–1 · min–1) consumed 500 ml of either flavored placebo or Red Bull Energy Drink (ED; 2.0 g taurine, 1.2 g glucuronolactone, 160 mg caffeine, 54 g carbohydrate, 40 mg niacin, 10 mg pantothenic acid, 10 mg vitamin B6, and 10 μg vitamin B12) 40 min before a simulated cycling time trial. Performance was measured as time to complete a standardized amount of work equal to 1 hr of cycling at 70% Wmax.Results:Performance improved with ED compared with placebo (3,690 ± 64 s vs. 3,874 ± 93 s, p < .01), but there was no difference in rating of perceived exertion between treatments. β-Endorphin levels increased during exercise, with the increase for ED approaching significance over placebo (p = .10). Substrate utilization, as measured by open-circuit spirometry, did not differ between treatments.Conclusion:These results demonstrate that consuming a commercially available ED before exercise can improve endurance performance and that this improvement might be in part the result of increased effort without a concomitant increase in perceived exertion.


Author(s):  
Kyle R. Cesareo ◽  
Justin R. Mason ◽  
Patrick G. Saracino ◽  
Margaret C. Morrissey ◽  
Michael J. Ormsbee

Abstract Background TeaCrine® is the synthetic version to naturally occurring theacrine (1, 3, 7, 9-tetramethyluric acid) found in the leaves of Camellia kucha tea plants. A few studies have examined the effects of TeaCrine® on cognitive perception, but no research exists examining its effects on resistance exercise performance. The purpose of this study was to determine the efficacy of TeaCrine®, a caffeine-like compound, on maximal muscular strength, endurance, and power performance in resistance-trained men. Methods Twelve resistance-trained men participated in a randomized, double-blind, cross-over designed study. Each participant performed one-repetition maximum (1RM) bench press, 1RM squat, bench press repetitions to failure (RTF) at 70% 1RM, squat RTF at 70% 1RM, and 2-km rowing time trial 90 min after consumption of: (1) Caffeine 300 mg (CAFF300); (2) TeaCrine® 300 mg (TEA300); (3) TeaCrine® + Caffeine (COMBO; 150 mg/150 mg); (4) Placebo 300 mg (PLA). Power and velocity were measured using a TENDO Power Analyzer. Visual analogue scales for energy, focus, motivation to exercise, and fatigue were administered at baseline and 90 min post-treatment ingestion (pre-workout). Rating of perceived exertion was assessed after bench press RTF and squat RTF. Results There were no differences between groups for 1RM, RTF, and power in the bench press and squat exercises. Only CAFF300 resulted in significant increases in perceived energy and motivation to exercise vs. TEA300 and PLA (Energy: + 9.8%, 95% confidence interval [3.3–16.4%], p < 0.01; + 15.3%, 95% CI [2.2–28.5%], p < 0.02; Motivation to exercise: + 8.9%, 95% CI [0.2–17.6%], p = 0.04, + 14.8%, 95% CI [4.7–24.8%], p < 0.01, respectively) and increased focus (+ 9.6%, 95% CI [2.1–17.1%], p = 0.01) vs. TEA300, but there were no significant differences between CAFF300 and COMBO (Energy + 3.9% [− 6.9–14.7%], Focus + 2.5% [− 6.3–11.3%], Motivation to exercise + 0.5% [− 11.6–12.6%]; p > 0.05). Conclusion Neither TEA300, CAFF300, COMBO, or PLA (when consumed 90 min pre-exercise) improved muscular strength, power, or endurance performance in resistance-trained men. Only CAFF300 improved measures of focus, energy, and motivation to exercise.


2013 ◽  
Vol 23 (5) ◽  
pp. 458-469 ◽  
Author(s):  
Catriona A. Burdon ◽  
Matthew W. Hoon ◽  
Nathan A. Johnson ◽  
Phillip G. Chapman ◽  
Helen T. O’Connor

Purpose:The purpose of this study was to establish whether sensory factors associated with cold-beverage ingestion exert an ergogenic effect on endurance performance independent of thermoregulatory or cardiovascular factors.Methods:Ten males performed three trials involving 90 min of steady state cycling (SS; 62% VO2max) in the heat (32.1 ± 0.9 °C, 40 ± 2.4% relative humidity) followed by a 4 kJ/kg body mass time trial (TT). During SS, participants consumed an identical volume (260 ± 38g) of sports beverage (7.4% carbohydrate) every 15 min as either ice slushy (–1 °C; ICE), thermoneutral liquid (37 °C; CON), or thermoneutral liquid consumption with expectorated ice slushy mouthwash (WASH).Results:Rectal temperature, hydration status, heart rate, and skin blood flow were not different between trials. Gastrointestinal (pill) temperature was lower in ICE (35.6 ± 2.7 °C) versus CON (37.4 ± 0.7 °C, p = .05). Heat storage tended to be lower with ICE during SS (14.7 ± 8.4W.m−2, p = .08) and higher during TT (68.9 ± 38.6W.m−2, p = .03) compared with CON (22.1 ± 6.6 and 31.4 ± 27.6W.m−2). ICE tended to lower the rating of perceived exertion (RPE, 12.9 ± 0.6, p = .05) and improve thermal comfort (TC, 4.5 ± 0.2; p = .01) vs. CON (13.8 ± 1.0 and 5.2 ± 0.2 respectively). WASH RPE (13.0 ± 0.8) and TC (4.8 ± 0.2) tended to be lower versus CON (p = .07 and p = .09 respectively). ICE improved performance (18:28 ± 1:03) compared with CON (20:24 ± 1:46) but not WASH (19:45 ± 1:43).Conclusion:Improved performance with ICE ingestion likely resulted from the creation of a gastrointestinal heat sink, reducing SS heat storage. Although the benefits of cold-beverage consumption are more potent when there is ingestion, improved RPE, TC, and meaningful performance improvement with WASH supports an independent sensory effect of presenting a cold stimulus to the mouth.


Author(s):  
Paul W. Macdermid ◽  
Stephen Stannard ◽  
Dean Rankin ◽  
David Shillington

Purpose:To determine beneficial effects of short-term galactose (GAL) supplementation over a 50:50 glucose–maltodextrin (GLUC) equivalent on self-paced endurance cycling performance.Methods:On 2 separate occasions, subjects performed a 100-km self-paced time trial (randomized and balanced order). This was interspersed with four 1-km and four 4-km maximal efforts reflecting the physical requirements of racing. Before each trial 38 ± 3 g of GAL or GLUC was ingested in a 6% concentrate fluid form 1 hr preexercise and then during exercise at a rate of 37 ± 3 g/hr. Performance variables were recorded for all 1- and 4-km efforts, all interspersed intervals, and the total 100-km distance. Noninvasive indicators of work intensity (heart rate [HR] and rating of perceived exertion) were also recorded.Results:Times taken to complete the 100-km performance trial were 8,298 ± 502 and 8,509 ± 578 s (p = .132), with mean power outputs of 271 ± 37 and 256 ± 45 W (p = .200), for GAL and GLUC, respectively. Mean HR did not differ (GAL 157 ± 7 and GLUC 157 ± 7 beats/min, p = .886). A main effect of carbohydrate (CHO) type on time to complete 4-km efforts occurred, with no CHO Type × Effort Order interaction observed. No main effect of CHO type or interaction of CHO Type × Sequential Order occurred for 1-km efforts.Conclusion:A 6% GAL drink does not enhance performance time during a self-paced cycling performance trial in highly trained endurance cyclists compared with a formula typically used by endurance athletes but may improve the ability to produce intermediate self-paced efforts.


2011 ◽  
Vol 36 (6) ◽  
pp. 920-927 ◽  
Author(s):  
Daniel Stevens ◽  
Patrick J. Oades ◽  
Neil Armstrong ◽  
Craig A. Williams

Muscle metabolism is increased following exercise in healthy individuals, affecting exercise metabolism during subsequent physical work. We hypothesized that following heavy-intensity exercise (HIE), disease factors in children with cystic fibrosis (CF) would further exacerbate exercise metabolism and perceived exertion during subsequent exercise. Nineteen children with CF (age, 13.4 ± 3.1 years; 10 female) and 19 healthy controls (age, 13.8 ± 3.5 years; 10 female) performed 10 bouts of HIE interspersed with 1 min of recovery between each bout. Three minutes later participants completed a 10-min moderate-intensity exercise (MIE) test (test 1). The MIE test was subsequently repeated 1 h (test 2) and 24 h (test 3) later. Each MIE test was identical and participants exercised at individualized work rates, calibrated by an initial graded maximal cardiopulmonary exercise test, while metabolic and perceived exertion measurements were taken. Following HIE, mixed-model ANOVAs showed a significant difference in oxygen uptake (VO2) and rating of perceived exertion (RPE) between the 2 groups across the MIE tests (p < 0.01). In controls, VO2 (L·min–1) and RPE decreased significantly from test 1 to test 2 (p < 0.01) and test 2 to test 3 (p < 0.05). However, in children with CF, VO2 (L·min–1) increased significantly from test 1 to test 2 (p < 0.01), while RPE did not differ, both VO2 and RPE decreased significantly from test 2 to test 3 (p < 0.01). In conclusion, following HIE the metabolic and perceptual responses to MIE in both groups decreased 24 h later during test 3. These data show that children with mild-to-moderate CF have the capability to perform HIE and 24 h allows sufficient time for recovery.


2015 ◽  
Vol 10 (2) ◽  
pp. 166-171 ◽  
Author(s):  
Martin J. Barwood ◽  
Jo Corbett ◽  
Christopher R.D. Wagstaff ◽  
Dan McVeigh ◽  
Richard C. Thelwell

Purpose:Unpleasant physical sensations during maximal exercise may manifest themselves as negative cognitions that impair performance, alter pacing, and are linked to increased rating of perceived exertion (RPE). This study examined whether motivational self-talk (M-ST) could reduce RPE and change pacing strategy, thereby enhancing 10-km time-trial (TT) cycling performance in contrast to neutral self-talk (N-ST).Methods:Fourteen men undertook 4 TTs, TT1–TT4. After TT2, participants were matched into groups based on TT2 completion time and underwent M-ST (n = 7) or N-ST (n = 7) after TT3. Performance, power output, RPE, and oxygen uptake (VO2) were compared across 1-km segments using ANOVA. Confidence intervals (95%CI) were calculated for performance data.Results:After TT3 (ie, before intervention), completion times were not different between groups (M-ST, 1120 ± 113 s; N-ST, 1150 ± 110 s). After M-ST, TT4 completion time was faster (1078 ± 96 s); the N-ST remained similar (1165 ± 111 s). The M-ST group achieved this through a higher power output and VO2 in TT4 (6th–10th km). RPE was unchanged. CI data indicated the likely true performance effect lay between 13- and 71-s improvement (TT4 vs TT3).Conclusion:M-ST improved endurance performance and enabled a higher power output, whereas N-ST induced no change. The VO2 response matched the increase in power output, yet RPE was unchanged, thereby inferring a perceptual benefit through M-ST. The valence and content of self-talk are important determinants of the efficacy of this intervention. These findings are primarily discussed in the context of the psychobiological model of pacing.


2018 ◽  
Vol 13 (3) ◽  
pp. 274-282 ◽  
Author(s):  
Scott Cocking ◽  
Mathew G. Wilson ◽  
David Nichols ◽  
N. Timothy Cable ◽  
Daniel J. Green ◽  
...  

Introduction: Ischemic preconditioning (IPC) may enhance endurance performance. No previous study has directly compared distinct IPC protocols for optimal benefit. Purpose: To determine whether a specific IPC protocol (ie, number of cycles, amount of muscle tissue, and local vs remote occlusion) elicits greater performance outcomes. Methods: Twelve cyclists performed 5 different IPC protocols 30 min before a blinded 375-kJ cycling time trial (TT) in a laboratory. Responses to traditional IPC (4 × 5-min legs) were compared with those to 8 × 5-min legs and sham (dose cycles), 4 × 5-min unilateral legs (dose tissue), and 4 × 5-min arms (remote). Rating of perceived exertion and blood lactate were recorded at each 25% TT completion. Power (W), heart rate (beats/min), and oxygen uptake () (mL · kg−1 · min−1) were measured continuously throughout TTs. Magnitude-based-inference statistics were employed to compare variable differences to the minimal practically important difference. Results: Traditional IPC was associated with a 17-s (0, 34) faster TT time than sham. Applying more dose cycles (8 × 5 min) had no impact on performance. Traditional IPC was associated with likely trivial higher blood lactate and possibly beneficial lower responses vs sham. Unilateral IPC was associated with 18-s (−11, 48) slower performance than bilateral (dose tissue). TT times after remote and local IPC were not different (0 [−16, 16] s). Conclusion: The traditional 4 × 5-min (local or remote) IPC stimulus resulted in the fastest TT time compared with sham; there was no benefit of applying a greater number of cycles or employing unilateral IPC.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 459-460
Author(s):  
Frank W Abrahamsen ◽  
Nar Gurung ◽  
Woubit Abdela ◽  
Gopal Reddy ◽  
Kim Mullenix

Abstract Hempseed meal (HSM) is a byproduct of hemp oil production and is high in crude protein, fiber, and fat, making it a potential feedstuff for ruminants. The objective of this study was to evaluate the effect of HSM supplementation on growth performance, rumen fermentation and blood chemistry profile of growing meat goats. Forty castrated, Boer cross goats were randomly assigned to one of the four treatments (n = 10): control, 10%, 20%, and 30% HSM supplementation. Data collected over a period of a 60-day feeding trial were analyzed utilizing the mixed model analysis function of SYSTAT, version 13. The result revealed total live weight gain decreased with the increasing levels of HSM supplementation 10.75, 9.53, 8.48, and 7.80 kg, for 0, 10, 20, and 30%, respectively. Average daily gain followed the same trend 0.179, 0.159, 0.141, and 0.13 kg, with a significant difference (P &lt; 0.05) observed between the control and 30 % supplementation. Conversely, feed to gain ratio increased with the increasing levels of supplementation 9.0, 10.2, 11.9, 12.2, likewise a significant difference was observed (P &lt; 0.05) between the control and 30% supplementation. Acetic, propionic, butyric, valeric, iso-valeric, and iso-butyric acid concentrations as well as the total VFA concentration decreased significantly (P &lt; 0.05) with the increasing level of supplementation. Acetic to propionic acid ratios increased with increasing level of supplementation 3.43, 4.36, 4.52, and 4.59, significant differences (P &lt; 0.05) were observed between control-20% and 30% HSM group. Serum glucose concentration decreased with an increasing rate of HSM supplementation while BUN concentration increased with no significant differences. These findings provide new insights into the feeding value of HSM for meat goats; however, further research needs to be conducted to determine the optimal level of supplementation.


Sign in / Sign up

Export Citation Format

Share Document