scholarly journals Does CCL19 act as a double-edged sword in cancer development?

Author(s):  
Arezoo Gowhari Shabgah ◽  
Zaid Mahdi Jaber Al-Obaidi ◽  
Heshu Sulaiman Rahman ◽  
Walid Kamal Abdelbasset ◽  
Wanich Suksatan ◽  
...  

Abstract Cancer is considered a life-threatening disease, and several factors are involved in its development. Chemokines are small proteins that physiologically exert pivotal roles in lymphoid and non-lymphoid tissues. The imbalance or dysregulation of chemokines has contributed to the development of several diseases, especially cancer. CCL19 is one of the homeostatic chemokines that is abundantly expressed in the thymus and lymph nodes. This chemokine, which primarily regulates immune cell trafficking, is involved in cancer development. Through the induction of anti-tumor immune responses and inhibition of angiogenesis, CCL19 exerts tumor-suppressive functions. In contrast, CCL19 also acts as a tumor-supportive factor by inducing inflammation, cell growth, and metastasis. Moreover, CCL19 dysregulation in several cancers, including colorectal, breast, pancreatic, and lung cancers, has been considered a tumor biomarker for diagnosis and prognosis. Using CCL19-based therapeutic approaches has also been proposed to overcome cancer development. This review will shed more light on the multifarious function of CCL19 in cancer and elucidate its application in diagnosis, prognosis, and even therapy. It is expected that the study of CCL19 in cancer might be promising to broaden our knowledge of cancer development and might introduce novel approaches in cancer management.

2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Ryota Hokari ◽  
Akira Tomioka

AbstractThe lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn’s disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer’s disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.


2018 ◽  
Vol 25 (36) ◽  
pp. 4758-4784 ◽  
Author(s):  
Amy L. Wilson ◽  
Magdalena Plebanski ◽  
Andrew N. Stephens

Cancer is one of the leading causes of death worldwide, and current research has focused on the discovery of novel approaches to effectively treat this disease. Recently, a considerable number of clinical trials have demonstrated the success of immunomodulatory therapies for the treatment of cancer. Monoclonal antibodies can target components of the immune system to either i) agonise co-stimulatory molecules, such as CD137, OX40 and CD40; or ii) inhibit immune checkpoints, such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death-1 (PD-1) and its corresponding ligand PD-L1. Although tumour regression is the outcome for some patients following immunotherapy, many patients still do not respond. Furthermore, chemotherapy has been the standard of care for most cancers, but the immunomodulatory capacity of these drugs has only recently been uncovered. The ability of chemotherapy to modulate the immune system through a variety of mechanisms, including immunogenic cell death (ICD), increased antigen presentation and depletion of regulatory immune cells, highlights the potential for synergism between conventional chemotherapy and novel immunotherapy. In addition, recent pre-clinical trials indicate dipeptidyl peptidase (DPP) enzyme inhibition, an enzyme that can regulate immune cell trafficking to the tumour microenvironment, as a novel cancer therapy. The present review focuses on the current immunological approaches for the treatment of cancer, and summarizes clinical trials in the field of immunotherapy as a single treatment and in combination with chemotherapy.


2020 ◽  
Vol 21 (3) ◽  
pp. 288-301 ◽  
Author(s):  
Lin Zhou ◽  
Luyao Ao ◽  
Yunyi Yan ◽  
Wanting Li ◽  
Anqi Ye ◽  
...  

Background: Some of the current challenges and complications of cancer therapy are chemotherapy- induced peripheral neuropathy (CIPN) and the neuropathic pain that are associated with this condition. Many major chemotherapeutic agents can cause neurotoxicity, significantly modulate the immune system and are always accompanied by various adverse effects. Recent evidence suggests that cross-talk occurs between the nervous system and the immune system during treatment with chemotherapeutic agents; thus, an emerging concept is that neuroinflammation is one of the major mechanisms underlying CIPN, as demonstrated by the upregulation of chemokines. Chemokines were originally identified as regulators of peripheral immune cell trafficking, and chemokines are also expressed on neurons and glial cells in the central nervous system. Objective: In this review, we collected evidence demonstrating that chemokines are potential mediators and contributors to pain signalling in CIPN. The expression of chemokines and their receptors, such as CX3CL1/CX3CR1, CCL2/CCR2, CXCL1/CXCR2, CXCL12/CXCR4 and CCL3/CCR5, is altered in the pathological conditions of CIPN, and chemokine receptor antagonists attenuate neuropathic pain behaviour. Conclusion: By understanding the mechanisms of chemokine-mediated communication, we may reveal chemokine targets that can be used as novel therapeutic strategies for the treatment of CIPN.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1343
Author(s):  
Gagan Chhabra ◽  
Chandra K. Singh ◽  
Deeba Amiri ◽  
Neha Akula ◽  
Nihal Ahmad

Immunomodulation of the tumor microenvironment is emerging as an important area of research for the treatment of cancer patients. Several synthetic and natural agents are being investigated for their ability to enhance the immunogenic responses of immune cells present in the tumor microenvironment to impede tumor cell growth and dissemination. Among them, resveratrol, a stilbenoid found in red grapes and many other natural sources, has been studied extensively. Importantly, resveratrol has been shown to possess activity against various human diseases, including cancer. Mechanistically, resveratrol has been shown to regulate an array of signaling pathways and processes involving oxidative stress, inflammation, apoptosis, and several anticancer effects. Furthermore, recent research suggests that resveratrol can regulate various cellular signaling events including immune cell regulation, cytokines/chemokines secretion, and the expression of several other immune-related genes. In this review, we have summarized recent findings on resveratrol’s effects on immune regulatory cells and associated signaling in various cancer types. Numerous immunomodulatory effects of resveratrol suggest it may be useful in combination with other cancer therapies including immunotherapy for effective cancer management.


2012 ◽  
Vol 12 (11) ◽  
pp. 762-773 ◽  
Author(s):  
Jean-Philippe Girard ◽  
Christine Moussion ◽  
Reinhold Förster

2001 ◽  
Vol 121 (4) ◽  
pp. 853-864 ◽  
Author(s):  
Marko Salmi ◽  
Kalle Alanen ◽  
Seija Grenman ◽  
Michael Briskin ◽  
Eugene C. Butcher ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0249256
Author(s):  
Esther Redder ◽  
Nils Kirschnick ◽  
Stefanie Bobe ◽  
René Hägerling ◽  
Nils Rouven Hansmeier ◽  
...  

Lymphatic vessels are indispensable for tissue fluid homeostasis, transport of solutes and dietary lipids and immune cell trafficking. In contrast to blood vessels, which are easily visible by their erythrocyte cargo, lymphatic vessels are not readily detected in the tissue context. Their invisibility interferes with the analysis of the three-dimensional lymph vessel structure in large tissue volumes and hampers dynamic intravital studies on lymphatic function and pathofunction. An approach to overcome these limitations are mouse models, which express transgenic fluorescent proteins under the control of tissue-specific promotor elements. We introduce here the BAC-transgenic mouse reporter strain Vegfr3-tdTomato that expresses a membrane-tagged version of tdTomato under control of Flt4 regulatory elements. Vegfr3-tdTomato mice inherited the reporter in a mendelian fashion and showed selective and stable fluorescence in the lymphatic vessels of multiple organs tested, including lung, kidney, heart, diaphragm, intestine, mesentery, liver and dermis. In this model, tdTomato expression was sufficient for direct visualisation of lymphatic vessels by epifluorescence microscopy. Furthermore, lymph vessels were readily visualized using a number of microscopic modalities including confocal laser scanning, light sheet fluorescence and two-photon microscopy. Due to the early onset of VEGFR-3 expression in venous embryonic vessels and the short maturation time of tdTomato, this reporter offers an interesting alternative to Prox1-promoter driven lymphatic reporter mice for instance to study the developmental differentiation of venous to lymphatic endothelial cells.


2021 ◽  
Author(s):  
Sakthi Rajendran ◽  
Clayton Peterson ◽  
Alessandro Canella ◽  
Yang Hu ◽  
Amy Gross ◽  
...  

Low grade gliomas (LGG) account for about two-thirds of all glioma diagnoses in adolescents and young adults (AYA) and malignant progression of these patients leads to dismal outcomes. Recent studies have shown the importance of the dynamic tumor microenvironment in high-grade gliomas (HGG), yet its role is still poorly understood in low-grade glioma malignant progression. Here, we investigated the heterogeneity of the immune microenvironment using a platelet-derived growth factor (PDGF)-driven RCAS (replication-competent ASLV long terminal repeat with a splice acceptor) glioma model that recapitulates the malignant progression of low to high-grade glioma in humans and also provides a model system to characterize immune cell trafficking and evolution. To illuminate changes in the immune cell landscape during tumor progression, we performed single-cell RNA sequencing on immune cells isolated from animals bearing no tumor (NT), LGG and HGG, with a particular focus on the myeloid cell compartment, which is known to mediate glioma immunosuppression. LGGs demonstrated significantly increased infiltrating T cells, CD4 T cells, CD8 T cells, B cells, and natural killer cells in the tumor microenvironment, whereas HGGs significantly abrogated this infiltration. Our study identified two distinct macrophage clusters in the tumor microenvironment; one cluster appeared to be bone marrow-derived while another was defined by overexpression of Trem2, a marker of tumor associated macrophages. Our data demonstrates that these two distinct macrophage clusters show an immune-activated phenotype (Stat1, Tnf, Cxcl9 and Cxcl10) in LGG which evolves to an immunosuppressive state (Lgals3, Apoc1 and Id2) in HGG that restricts T cell recruitment and activation. We identified CD74 and macrophage migration inhibition factor (MIF) as potential targets for these distinct macrophage populations. Interestingly, these results were mirrored by our analysis of the TCGA dataset, which demonstrated a statistically significant association between CD74 overexpression and decreased overall survival in AYA patients with grade II gliomas. Targeting immunosuppressive myeloid cells and intra-tumoral macrophages within this therapeutic window may ameliorate mechanisms associated with immunosuppression before and during malignant progression.


Sign in / Sign up

Export Citation Format

Share Document