scholarly journals Vegfr3-tdTomato, a reporter mouse for microscopic visualization of lymphatic vessel by multiple modalities

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0249256
Author(s):  
Esther Redder ◽  
Nils Kirschnick ◽  
Stefanie Bobe ◽  
René Hägerling ◽  
Nils Rouven Hansmeier ◽  
...  

Lymphatic vessels are indispensable for tissue fluid homeostasis, transport of solutes and dietary lipids and immune cell trafficking. In contrast to blood vessels, which are easily visible by their erythrocyte cargo, lymphatic vessels are not readily detected in the tissue context. Their invisibility interferes with the analysis of the three-dimensional lymph vessel structure in large tissue volumes and hampers dynamic intravital studies on lymphatic function and pathofunction. An approach to overcome these limitations are mouse models, which express transgenic fluorescent proteins under the control of tissue-specific promotor elements. We introduce here the BAC-transgenic mouse reporter strain Vegfr3-tdTomato that expresses a membrane-tagged version of tdTomato under control of Flt4 regulatory elements. Vegfr3-tdTomato mice inherited the reporter in a mendelian fashion and showed selective and stable fluorescence in the lymphatic vessels of multiple organs tested, including lung, kidney, heart, diaphragm, intestine, mesentery, liver and dermis. In this model, tdTomato expression was sufficient for direct visualisation of lymphatic vessels by epifluorescence microscopy. Furthermore, lymph vessels were readily visualized using a number of microscopic modalities including confocal laser scanning, light sheet fluorescence and two-photon microscopy. Due to the early onset of VEGFR-3 expression in venous embryonic vessels and the short maturation time of tdTomato, this reporter offers an interesting alternative to Prox1-promoter driven lymphatic reporter mice for instance to study the developmental differentiation of venous to lymphatic endothelial cells.

2021 ◽  
Author(s):  
Esther Redder ◽  
Nils Kirschnick ◽  
René Hägerling ◽  
Nils Hansmeier ◽  
Friedemann Kiefer

AbstractLymphatic vessels are indispensable for tissue fluid homeostasis, transport of solutes and dietary lipids and immune cell trafficking. In contrast to blood vessels, which are easily visible by their erythrocyte cargo, lymphatic vessels are not readily detected in the tissue context. Their invisibility interferes with the analysis of the three-dimensional lymph vessel structure in large tissue volumes and hampers dynamic intravital studies on lymphatic function and pathofunction. An approach to overcome these limitations are mouse models, which express transgenic fluorescent proteins under the control of tissue-specific promotor elements.We introduce here the BAC-transgenic mouse reporter strain Vegfr3-tdTomato that expresses a membrane-tagged version of tdTomato under control of Flt4 regulatory elements. Vegfr3-tdTomato mice inherited the reporter in a mendelian fashion and showed selective and stable fluorescence in the lymphatic vessels of multiple organs tested, including lung, kidney, heart, diaphragm, intestine, mesentery and dermis. In this model, tdTomato expression was sufficient for direct visualisation of lymphatic vessels by epifluorescence microscopy. Furthermore, lymph vessels were readily visualized using a number of microscopic modalities including confocal laser scanning, light sheet fluorescence and two-photon microscopy. Due to the early onset of VEGFR-3 expression in venous embryonic vessels and the short maturation time of tdTomato, this reporter offers an interesting alternative to Prox1-promoter driven lymphatic reporter mice for instance to study the developmental differentiation of venous to lymphatic endothelial cells.


2021 ◽  
Vol 8 ◽  
Author(s):  
Takuro Miyazaki ◽  
Akira Miyazaki

Lymphatic vessels are necessary for maintaining tissue fluid balance, trafficking of immune cells, and transport of dietary lipids. Growing evidence suggest that lymphatic functions are limited under hypercholesterolemic conditions, which is closely related to atherosclerotic development involving the coronary and other large arteries. Indeed, ablation of lymphatic systems by Chy-mutation as well as depletion of lymphangiogenic factors, including vascular endothelial growth factor-C and -D, in mice perturbs lipoprotein composition to augment hypercholesterolemia. Several investigations have reported that periarterial microlymphatics were attracted by atheroma-derived lymphangiogenic factors, which facilitated lymphatic invasion into the intima of atherosclerotic lesions, thereby modifying immune cell trafficking. In contrast to the lipomodulatory and immunomodulatory roles of the lymphatic systems, the critical drivers of lymphangiogenesis and the details of lymphatic insults under hypercholesterolemic conditions have not been fully elucidated. Interestingly, cholesterol-lowering trials enable hypercholesterolemic prevention of lymphatic drainage in mice; however, a causal relationship between hypercholesterolemia and lymphatic defects remains elusive. In this review, the contribution of aberrant lymphangiogenesis and lymphatic cholesterol transport to hypercholesterolemic atherosclerosis was highlighted. The causal relationship between hypercholesterolemia and lymphatic insults as well as the current achievements in the field were discussed.


Development ◽  
2021 ◽  
Vol 148 (11) ◽  
Author(s):  
Mathias Francois ◽  
Anna Oszmiana ◽  
Natasha L. Harvey

ABSTRACT The lymphatic vasculature is an integral component of the cardiovascular system. It is essential to maintain tissue fluid homeostasis, direct immune cell trafficking and absorb dietary lipids from the digestive tract. Major advances in our understanding of the genetic and cellular events important for constructing the lymphatic vasculature during development have recently been made. These include the identification of novel sources of lymphatic endothelial progenitor cells, the recognition of lymphatic endothelial cell specialisation and heterogeneity, and discovery of novel genes and signalling pathways underpinning developmental lymphangiogenesis. Here, we review these advances and discuss how they inform our understanding of lymphatic network formation, function and dysfunction.


2019 ◽  
Vol 8 (4) ◽  
pp. 495 ◽  
Author(s):  
Csányi ◽  
Singla

The lymphatic network is well known for its role in the maintenance of tissue fluid homeostasis, absorption of dietary lipids, trafficking of immune cells, and adaptive immunity. Aberrant lymphatic function has been linked to lymphedema and immune disorders for a long time. Discovery of lymphatic cell markers, novel insights into developmental and postnatal lymphangiogenesis, development of genetic mouse models, and the introduction of new imaging techniques have improved our understanding of lymphatic function in both health and disease, especially in the last decade. Previous studies linked the lymphatic vasculature to atherosclerosis through regulation of immune responses, reverse cholesterol transport, and inflammation. Despite extensive research, many aspects of the lymphatic circulation in atherosclerosis are still unknown and future studies are required to confirm that arterial lymphangiogenesis truly represents a therapeutic target in patients with cardiovascular disease. In this review article, we provide an overview of factors and mechanisms that regulate lymphangiogenesis, summarize recent findings on the role of lymphatics in macrophage reverse cholesterol transport, immune cell trafficking and pathogenesis of atherosclerosis, and present an overview of pharmacological and genetic strategies to modulate lymphatic vessel density in cardiovascular tissue.


2007 ◽  
Vol 4 (1) ◽  
pp. 77-82 ◽  
Author(s):  
Hyeon-Min Johng ◽  
Jung Sun Yoo ◽  
Tae-Jong Yoon ◽  
Hak-Soo Shin ◽  
Byung-Cheon Lee ◽  
...  

A novel application of fluorescent magnetic nanoparticles was made to visualize a new tissue which had not been detectable by using simple stereomicroscopes. This unfamiliar threadlike structure inside the lymphatic vessels of rats was demonstrated in vivo by injecting nanoparticles into lymph nodes and applying magnetic fields on the collecting lymph vessels so that the nanoparticles were taken up by the threadlike structures. Confocal laser scanning microscope images of cryosectioned specimens exhibited that the nanoparticles were absorbed more strongly by the threadlike structure than by the lymphatic vessels. Further examination using a transmission electron microscope revealed that the nanoparticles had been captured between the reticular fibers in the extracellular matrix of the threadlike structures. The emerging technology of nanoparticles not only allows the extremely elusive threadlike structures to be visualized but also is expected to provide a magnetically controllable means to investigate their physiological functions.


2004 ◽  
Vol 286 (3) ◽  
pp. F564-F571 ◽  
Author(s):  
Carsten Kneuer ◽  
Kerstin U. Honscha ◽  
Walther Honscha

Previous Northern blot studies suggested strong expression of a homolog to the sodium-dependent hepatocellular methotrexate transporter in the kidneys. Here, we report on the cloning of the cDNA for the renal methotrexate carrier isoform-1 (RK-MTX-1) and its functional characterization. Sequencing revealed 97% homology to the rat liver methotrexate carrier with an identical open reading frame. Differences were located in the 5′-untranslated region and resulted in the absence of putative regulatory elements (Barbie box, Ah/ARNT receptor) identified in the cDNA for the hepatocellular carrier. For functional characterization, MTX-1 cDNA was stably expressed in Madin-Darby canine kidney (MDCK) cells. A sodium-dependent transport of methotrexate with a Kmof 41 μM and a Vmaxof 337 pmol·mg protein-1·min-1was observed. This uptake was blocked by the reduced folates dihydro- and tetrahydrofolate as well as by methotrexate itself. Folate was inhibiting only weakly, whereas 5-methyltetrahydrofolate was a strong inhibitor. Further inhibitors of the methotrexate transport included the bile acids cholate and taurocholate and xenobiotics like bumetanide and BSP. PAH, ouabain, bumetanide, cholate, taurocholate, and acetyl salicylic acid were tested as potential substrates. However, none of these substances was transported by MTX-1. Furthermore, expression of RK-MTX-1 in MDCK cells enhanced methotrexate toxicity in these cells fivefold. Analysis of a fusion protein of RK-MTX-1 and the influenza virus hemagglutinin epitope by immunoblotting revealed a major band at 72 kDa within the cell membrane but not in the soluble fraction of transfected MDCK. Indirect immunofluorescence staining revealed an exclusive localization of the carrier in the plasma membrane, and by confocal laser-scanning microscopy we were able to demonstrate that the protein is expressed in the serosal region of MDCK tubules grown in a morphogenic collagen gel model.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 159-166 ◽  
Author(s):  
I. Röske ◽  
K. Röske ◽  
D. Uhlmann

The application of in situ hybridization with group specific oligonucleotide probes detected by epifluorescence microscopy and confocal laser scanning microscopy was tested to identify spatial gradients in the distribution of bacteria in biofilms of plug flow reactors and in the bottom sediment layer of a drinking water reservoir. The two tubular biofilm reactors were fed with the effluent from a full scale biological wastewater treatment plant to which were added the chlorophenols whole degradation was being investigated. One was operated as a continuous-flow reactor and the other as a sequencing batch reactor. The vertical gradients in the microbial colonization of the sediment were analyzed by means of glass slides exposed to the sediment. In the biofilms of both reactors the beta-Proteobacteria dominated. The Cytophaga-Flavobacterium group and the Gram-positive bacteria were also abundant. Only small amounts of gamma-bacteria could be detected. This is contrary to findings using traditional cultivation methods. Unlike the biofilms in the reactor, the bacterial Aufwuchs on the glass slides in the sediment presented a surprising diversity of morphological types and size classes of bacteria.


Author(s):  
Michael Weiler ◽  
J. Brandon Dixon

The lymphatic vasculature is present in nearly every tissue of the body to serve essential functions in fluid homeostasis, immune cell trafficking, and lipid transport, and it has been implicated in the progression of several diseases. Despite the critical roles that this system performs, very little is known about the lymphatic vasculature in comparison to the blood vasculature, which can be attributed, in part, to the difficulty associated with imaging lymphatic vessels. With the growing interest in studying lymphatics, near-infrared (NIR) imaging has emerged in the literature as a novel lymphatic imaging modality to simultaneously improve spatial resolution to visualize small initial lymphatics and increase temporal resolution to capture the dynamic lymphatic pump function responsible for fluid propulsion.


2007 ◽  
Vol 70 (6) ◽  
pp. 1379-1385 ◽  
Author(s):  
SHERIASE Q. SANDERS ◽  
DOROTHY H. BOOTHE ◽  
JOSEPH F. FRANK ◽  
JUDY W. ARNOLD

Campylobacter jejuni is the most frequently reported cause of foodborne illness in the United States, but its survival outside the host is poor. The objective of this research was to examine the formation and composition of biofilms by C. jejuni alone and within mixed bacterial populations from the poultry-processing environment. C. jejuni growth was assessed with four media, two temperatures, and two atmospheric conditions to develop culture methods for liquid media that would allow growth within the biofilms. Growth kinetics was followed at four cell densities to determine temporal compatibility within biofilm mixtures. Analysis of the biofilms by confocal laser scanning microscopy showed that C. jejuni formed a biofilm when incubated without other bacteria. The average surface area of stainless steel covered by C. jejuni increased by 50% from 24 to 48 h, remained level to 96 h, and then decreased by 88% by 168 h. C. jejuni and mixed bacterial populations formed biofilms during incubation periods of up to 7 days. The area of the mixture was significantly greater than for C. jejuni alone at 24 h, was approximately the same at 48 h, and was significantly less by 168 h. When incubated with either of two initial inoculum densities of other bacteria, the number of C. jejuni was enhanced after 24 h. The intensity of fluorescence and cell viability were monitored by epifluorescence microscopy. This study provides the basis for studying interactions of Campylobacter spp. with other bacteria in the environment, which will aid in the design of effective intervention strategies.


2003 ◽  
Vol 48 (4) ◽  
pp. 113-119 ◽  
Author(s):  
N. Raizada ◽  
V. Sonakya ◽  
R. Dalhoff ◽  
M. Hausner ◽  
P.A. Wilderer

The microbial ecology of the rumen is very complex. Different species of bacteria, protozoa, and fungi are involved in digestion of plant material in ruminants. In spite of complicated interrelationships among the various groups of microorganisms in the rumen ecosystem, Bacteria and Archaea are believed to play a major role because of their numerical predominance and metabolic diversity. In this work we are presenting the results for microbial population dynamics of rumen microbes during two-stage anaerobic digestion of grass. The reactors were inoculated with fresh rumen content. Fluorescent in situ hybridization, confocal laser scanning microscopy and epifluorescence microscopy were employed for microbial investigation. It was observed that Bacteria dominated in the hydrolytic reactor (1st stage) whereas Archaea were predominant in the methanogenic reactor (2nd stage). The stability of the methanogenic reactor was result of the dominance of Methanosaeta species (mainly the filamentous type).


Sign in / Sign up

Export Citation Format

Share Document