scholarly journals Temporal Gating of Synaptic Competition in the Amygdala by Cannabinoid Receptor Activation

2020 ◽  
Vol 30 (7) ◽  
pp. 4064-4075 ◽  
Author(s):  
Natália Madeira ◽  
Ana Drumond ◽  
Rosalina Fonseca

Abstract The acquisition of fear memories involves plasticity of the thalamic and cortical pathways to the lateral amygdala (LA). In turn, the maintenance of synaptic plasticity requires the interplay between input-specific synaptic tags and the allocation of plasticity-related proteins. Based on this interplay, weakly activated synapses can express long-lasting forms of synaptic plasticity by cooperating with strongly activated synapses. Increasing the number of activated synapses can shift cooperation to competition. Synaptic cooperation and competition can determine whether two events, separated in time, are associated or whether a particular event is selected for storage. The rules that determine whether synapses cooperate or compete are unknown. We found that synaptic cooperation and competition, in the LA, are determined by the temporal sequence of cortical and thalamic stimulation and that the strength of the synaptic tag is modulated by the endocannabinoid signaling. This modulation is particularly effective in thalamic synapses, supporting a critical role of endocannabinoids in restricting thalamic plasticity. Also, we found that the availability of synaptic proteins is activity-dependent, shifting competition to cooperation. Our data present the first evidence that presynaptic modulation of synaptic activation, by the cannabinoid signaling, functions as a temporal gating mechanism limiting synaptic cooperation and competition.

2019 ◽  
Author(s):  
Ana Drumond ◽  
Natália Madeira ◽  
Rosalina Fonseca

ABSTRACTThe acquisition of fear memories involves plasticity of the thalamic and cortical pathways to the lateral amygdala (LA). The maintenance of synaptic plasticity requires the interplay between input-specific synaptic tags and the allocation of plasticity-related proteins (PRPs). Based on this interplay, weakly activated synapses can express long-lasting synaptic plasticity by cooperation with strongly activated ones. Increasing the number of activated synapses can shift cooperation to competition. Synaptic cooperation and competition can determine whether two events, separated in time, are linked or selected. The rules that determine whether synapses cooperate or compete are unknown. We found that synaptic cooperation and competition, in the LA, are determined by the temporal sequence of cortical and thalamic stimulation and that the strength of the synaptic tag is modulated by the endocannabinoid signalling. This modulation is particularly effective in thalamic synapses, suggesting a critical role of endocannabinoids in restricting thalamic plasticity. Also, we found that PRPs availability is modulated by the action-potential firing of neurons, shifting competition to cooperation. Our data present the first evidence that pre-synaptic modulation of synaptic activation, by the cannabinoid signalling, function as a temporal gating mechanism limiting synaptic cooperation and competition.


2001 ◽  
Vol 85 (5) ◽  
pp. 2195-2202 ◽  
Author(s):  
Joachim Behr ◽  
Uwe Heinemann ◽  
Istvan Mody

To elucidate the gating mechanism of the epileptic dentate gyrus on seizure-like input, we investigated dentate gyrus field potentials and granule cell excitatory postsynaptic potentials (EPSPs) following high-frequency stimulation (10–100 Hz) of the lateral perforant path in an experimental model of temporal lobe epilepsy (i.e., kindled rats). Although control slices showed steady EPSP depression at frequencies greater than 20 Hz, slices taken from animals 48 h after the last seizure presented pronounced EPSP facilitation at 50 and 100 Hz, followed by steady depression. However, 28 days after kindling, the EPSP facilitation was no longer detectable. Using the specific N-methyl-d-aspartate (NMDA) and RS-α-amino-3-hydroxy-5-methyl-4-isoxazoleproponic acid (AMPA) receptor antagonists 2-amino-5-phosphonovaleric acid and SYM 2206, we examined the time course of alterations in glutamate receptor–dependent synaptic currents that parallel transient EPSP facilitation. Forty-eight hours after kindling, the fractional AMPA and NMDA receptor–mediated excitatory postsynaptic current (EPSC) components shifted dramatically in favor of the NMDA receptor–mediated response. Four weeks after kindling, however, AMPA and NMDA receptor–mediated EPSCs reverted to control-like values. Although the granule cells of the dentate gyrus contain mRNA-encoding kainate receptors, neither single nor repetitive perforant path stimuli evoked kainate receptor–mediated EPSCs in control or in kindled rats. The enhanced excitability of the kindled dentate gyrus 48 h after the last seizure, as well as the breakdown of its gating function, appear to result from transiently enhanced NMDA receptor activation that provides significantly slower EPSC kinetics than those observed in control slices and in slices from kindled animals with a 28-day seizure-free interval. Therefore, NMDA receptors seem to play a critical role in the acute throughput of seizure activity and in the induction of the kindled state but not in the persistence of enhanced seizure susceptibility.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shi-Yu Sun ◽  
Xue-Yan Li ◽  
He-Hua Ge ◽  
Yu-Xin Zhang ◽  
Zhe-Zhe Zhang ◽  
...  

Increasing evidence indicates that exposure to inflammation during pregnancy intensifies the offspring’s cognitive impairment during aging, which might be correlated with changes in some synaptic plasticity-related proteins. In addition, an enriched environment (EE) can significantly exert a beneficial impact on cognition and synaptic plasticity. However, it is unclear whether gestational inflammation combined with postnatal EE affects the changes in cognition and synaptic plasticity-related proteins during aging. In this study, pregnant mice were intraperitoneally injected with lipopolysaccharides (LPS, 50 μg/kg) or normal saline at days 15–17 of pregnancy. At 21 days after delivery, some LPS-treated mice were randomly selected for EE treatment. At the age of 6 and 18 months, Morris water maze (MWM) and western blotting were, respectively, used to evaluate or measure the ability of spatial learning and memory and the levels of postsynaptic plasticity-related proteins in the hippocampus, including postsynaptic density protein 95 (PSD-95), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) GluA1 subunit, and Homer-1b/c. The results showed that 18-month-old control mice had worse spatial learning and memory and lower levels of these synaptic plasticity-related proteins (PSD-95, GluA1, and Homer-1b/c) than the 6-month-old controls. Gestational LPS exposure exacerbated these age-related changes of cognition and synaptic proteins, but EE could alleviate the treatment effect of LPS. In addition, the performance during learning and memory periods in the MWM correlated with the hippocampal levels of PSD-95, GluA1, and Homer-1b/c. Our results suggested that gestational inflammation accelerated age-related cognitive impairment and the decline of PSD-95, GluA1, and Homer-1b/c protein expression, and postpartum EE could alleviate these changes.


Author(s):  
Christopher Patzke ◽  
Jinye Dai ◽  
Marisa M. Brockmann ◽  
Zijun Sun ◽  
Pascal Fenske ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 821
Author(s):  
Wanglong Qiu ◽  
Chia-Yu Kuo ◽  
Yu Tian ◽  
Gloria H. Su

Activin, a member of the TGF-β superfamily, is involved in many physiological processes, such as embryonic development and follicle development, as well as in multiple human diseases including cancer. Genetic mutations in the activin signaling pathway have been reported in many cancer types, indicating that activin signaling plays a critical role in tumorigenesis. Recent evidence reveals that activin signaling may function as a tumor-suppressor in tumor initiation, and a promoter in the later progression and metastasis of tumors. This article reviews many aspects of activin, including the signaling cascade of activin, activin-related proteins, and its role in tumorigenesis, particularly in pancreatic cancer development. The mechanisms regulating its dual roles in tumorigenesis remain to be elucidated. Further understanding of the activin signaling pathway may identify potential therapeutic targets for human cancers and other diseases.


2016 ◽  
Vol 310 (4) ◽  
pp. F284-F293 ◽  
Author(s):  
Alexis A. Gonzalez ◽  
Flavia Cifuentes-Araneda ◽  
Cristobal Ibaceta-Gonzalez ◽  
Alex Gonzalez-Vergara ◽  
Leonardo Zamora ◽  
...  

Renin is synthesized in the principal cells of the collecting duct (CD), and its production is increased via cAMP in angiotensin (ANG) II-dependent hypertension, despite suppression of juxtaglomerular (JG) renin. Vasopressin, one of the effector hormones of the renin-angiotensin system (RAS) via the type 2-receptor (V2R), activates the cAMP/PKA/cAMP response element-binding protein (CREB) pathway and aquaporin-2 expression in principal cells of the CD. Accordingly, we hypothesized that activation of V2R increases renin synthesis via PKA/CREB, independently of ANG II type 1 (AT1) receptor activation in CD cells. Desmopressin (DDAVP; 10−6 M), a selective V2R agonist, increased renin mRNA (∼3-fold), prorenin (∼1.5-fold), and renin (∼2-fold) in cell lysates and cell culture media in the M-1 CD cell line. Cotreatment with DDAVP+H89 (PKA inhibitor) or CREB short hairpin (sh) RNA prevented this response. H89 also blunted DDAVP-induced CREB phosphorylation and nuclear localization. In 48-h water-deprived (WD) mice, prorenin-renin protein levels were increased in the renal inner medulla (∼1.4- and 1.8-fold). In WD mice treated with an ACE inhibitor plus AT1 receptor blockade, renin mRNA and prorenin protein levels were still higher than controls, while renin protein content was not changed. In M-1 cells, ANG II or DDAVP increased prorenin-renin protein levels; however, there were no further increases by combined treatment. These results indicate that in the CD the activation of the V2R stimulates renin synthesis via the PKA/CREB pathway independently of RAS, suggesting a critical role for vasopressin in the regulation of renin in the CD.


2009 ◽  
Vol 187 (7) ◽  
pp. 1101-1116 ◽  
Author(s):  
Chiara Francavilla ◽  
Paola Cattaneo ◽  
Vladimir Berezin ◽  
Elisabeth Bock ◽  
Diletta Ami ◽  
...  

Neural cell adhesion molecule (NCAM) associates with fibroblast growth factor (FGF) receptor-1 (FGFR1). However, the biological significance of this interaction remains largely elusive. In this study, we show that NCAM induces a specific, FGFR1-mediated cellular response that is remarkably different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various effectors. Furthermore, NCAM, but not FGF-2, promotes cell migration, and this response depends on FGFR1 recycling and sustained Src activation. Our results implicate NCAM as a nonconventional ligand for FGFR1 that exerts a peculiar control on the intracellular trafficking of the receptor, resulting in a specific cellular response. Besides introducing a further level of complexity in the regulation of FGFR1 function, our findings highlight the link of FGFR recycling with sustained signaling and cell migration and the critical role of these events in dictating the cellular response evoked by receptor activation.


2014 ◽  
Vol 34 (10) ◽  
pp. 1706-1714 ◽  
Author(s):  
Yao Li ◽  
Rachael L Baylie ◽  
Matthew J Tavares ◽  
Joseph E Brayden

Cerebral parenchymal arterioles (PAs) have a critical role in assuring appropriate blood flow and perfusion pressure within the brain. They are unique in contrast to upstream pial arteries, as defined by their critical roles in neurovascular coupling, distinct sensitivities to chemical stimulants, and enhanced myogenic tone development. The objective of the present study was to reveal some of the unique mechanisms of myogenic tone regulation in the cerebral microcirculation. Here, we report that in vivo suppression of TRPM4 (transient receptor potential) channel expression, or inhibition of TRPM4 channels with 9-phenanthrol substantially reduced myogenic tone of isolated PAs, supporting a key role of TRPM4 channels in PA myogenic tone development. Further, downregulation of TRPM4 channels inhibited vasoconstriction induced by the specific P2Y4 and P2Y6 receptor ligands (UTP γS and UDP) by 37% and 42%, respectively. In addition, 9-phenanthrol substantially attenuated purinergic ligand-induced membrane depolarization and constriction of PAs, and inhibited ligand-evoked TRPM4 channel activation in isolated PA myocytes. In concert with our previous work showing the essential contributions of P2Y4 and P2Y6 receptors to myogenic regulation of PAs, the current results point to TRPM4 channels as an important link between mechanosensitive P2Y receptor activation and myogenic constriction of cerebral PAs.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 723-723
Author(s):  
Qing-Feng Tao ◽  
Diego Martinez vasquez ◽  
Ricardo Rocha ◽  
Gordon H Williams ◽  
Gail K Adler

P165 Aldosterone through its interaction with the mineralocorticoid receptor (MR) plays a critical role in the development of hypertension and cardiovascular injury (CVI). Normally, MR is protected by 11β-hydroxysteroid dehydrogenase (11β-HSD) which inactivates glucocorticoids preventing their binding to MR. We hypothesis that if activation of MR by either aldosterone or glucocorticoids induces hypertension and CVI, then the inhibition of 11β-HSD with glycyrrhizin (GA), a natural inhibitor of 11β-HSD, should induce damage similar to that observed with aldosterone. Sprague-Dawley rats were uninephrectomized, and treated for 4 weeks with 1% NaCl (in drinking water) for the control group, 1% NaCl + aldosterone infusion (0.75 μg/h), or 1% NaCl + GA (3.5 g/l in drinking water). After 4 weeks, aldosterone and GA caused significant increases in blood pressure compared to control rats ([mean ± SEM] 211± 9, 205 ± 12, 120 ± 9 mmHg, respectively, p<0.001). Both aldosterone- and GA-treated rats had a significant increase in proteinuria (152.2 ± 8.7 and 107.7 ± 19.5 mg/d, respectively) versus controls (51.2 ± 9.5 mg/d). There was a significant increase (p<0.001) in heart to body weight ratio in the rats treated with aldosterone or GA compared with control (3.92 ± 0.10, 3.98 ± 0.88, and 3.24 ± 0.92 mg/g, respectively). Hearts of GA and aldosterone treated rats showed similar histological changes consisting of biventricular myocardial necrosis and fibrinoid necrosis of small coronary arteries and arterioles. These data suggests that in rodents activation of MR by either aldosterone or corticosterone leads to severe hypertension, vascular injury, proteinuria and myocardial infarction. Thus, 11β-HSD plays an important role in protecting the organism from injury.


Sign in / Sign up

Export Citation Format

Share Document