scholarly journals Clinical and Laboratory Predictors of In-hospital Mortality in Patients With Coronavirus Disease-2019: A Cohort Study in Wuhan, China

2020 ◽  
Vol 71 (16) ◽  
pp. 2079-2088 ◽  
Author(s):  
Kun Wang ◽  
Peiyuan Zuo ◽  
Yuwei Liu ◽  
Meng Zhang ◽  
Xiaofang Zhao ◽  
...  

Abstract Background This study aimed to develop mortality-prediction models for patients with coronavirus disease-2019 (COVID-19). Methods The training cohort included consecutive COVID-19 patients at the First People’s Hospital of Jiangxia District in Wuhan, China, from 7 January 2020 to 11 February 2020. We selected baseline data through the stepwise Akaike information criterion and ensemble XGBoost (extreme gradient boosting) model to build mortality-prediction models. We then validated these models by randomly collected COVID-19 patients in Union Hospital, Wuhan, from 1 January 2020 to 20 February 2020. Results A total of 296 COVID-19 patients were enrolled in the training cohort; 19 died during hospitalization and 277 discharged from the hospital. The clinical model developed using age, history of hypertension, and coronary heart disease showed area under the curve (AUC), 0.88 (95% confidence interval [CI], .80–.95); threshold, −2.6551; sensitivity, 92.31%; specificity, 77.44%; and negative predictive value (NPV), 99.34%. The laboratory model developed using age, high-sensitivity C-reactive protein, peripheral capillary oxygen saturation, neutrophil and lymphocyte count, d-dimer, aspartate aminotransferase, and glomerular filtration rate had a significantly stronger discriminatory power than the clinical model (P = .0157), with AUC, 0.98 (95% CI, .92–.99); threshold, −2.998; sensitivity, 100.00%; specificity, 92.82%; and NPV, 100.00%. In the subsequent validation cohort (N = 44), the AUC (95% CI) was 0.83 (.68–.93) and 0.88 (.75–.96) for the clinical model and laboratory model, respectively. Conclusions We developed 2 predictive models for the in-hospital mortality of patients with COVID-19 in Wuhan that were validated in patients from another center.

2020 ◽  
Author(s):  
Victoria Garcia-Montemayor ◽  
Alejandro Martin-Malo ◽  
Carlo Barbieri ◽  
Francesco Bellocchio ◽  
Sagrario Soriano ◽  
...  

Abstract Background Besides the classic logistic regression analysis, non-parametric methods based on machine learning techniques such as random forest are presently used to generate predictive models. The aim of this study was to evaluate random forest mortality prediction models in haemodialysis patients. Methods Data were acquired from incident haemodialysis patients between 1995 and 2015. Prediction of mortality at 6 months, 1 year and 2 years of haemodialysis was calculated using random forest and the accuracy was compared with logistic regression. Baseline data were constructed with the information obtained during the initial period of regular haemodialysis. Aiming to increase accuracy concerning baseline information of each patient, the period of time used to collect data was set at 30, 60 and 90 days after the first haemodialysis session. Results There were 1571 incident haemodialysis patients included. The mean age was 62.3 years and the average Charlson comorbidity index was 5.99. The mortality prediction models obtained by random forest appear to be adequate in terms of accuracy [area under the curve (AUC) 0.68–0.73] and superior to logistic regression models (ΔAUC 0.007–0.046). Results indicate that both random forest and logistic regression develop mortality prediction models using different variables. Conclusions Random forest is an adequate method, and superior to logistic regression, to generate mortality prediction models in haemodialysis patients.


Author(s):  
Tara Lagu ◽  
Mihaela Stefan ◽  
Quinn Pack ◽  
Auras Atreya ◽  
Mohammad A Kashef ◽  
...  

Background: Mortality prediction models, developed with the goal of improving risk stratification in hospitalized heart failure (HF) patients, show good performance characteristics in the datasets in which they were developed but have not been validated in external populations. Methods: We used a novel multi-hospital dataset [HealthFacts (Cerner Corp)] derived from the electronic health record (years 2010-2012). We examined the performance of four published HF inpatient mortality prediction models developed using data from: the Acute Decompensated Heart Failure National Registry (ADHERE), the Enhanced Feedback for Effective Cardiac Treatment (EFFECT) study, and the Get With the Guidelines-Heart Failure (GWTG-HF) registry. We compared to an administrative HF mortality prediction model (Premier model) that includes selected patient demographics, comorbidities, prior heart failure admissions, and therapies administered (e.g., inotropes, mechanical ventilation) in the first 2 hospital days. We also compared to a model that uses clinical data but is not heart failure-specific: the Laboratory-Based Acute Physiology Score (LAPS2). We included patients aged ≥18 years admitted with HF to one of 62 hospitals in the database. We applied all 6 models to the data and calculated the c-statistics. Results: We identified 13,163 patients ≥18 years old with a diagnosis of heart failure. Median age was 74 years; approximately half were women; 65% of patients were white and 27% were black. In-hospital mortality was 4.3%. Bland-Altman plots revealed that, at higher predicted mortality, the Premier model outperformed the clinical models. Discrimination of the models varied: ADHERE model (0.68); EFFECT (0.70); GWTG-HF, Peterson (0.69); GWTG-HF, Eapen (0.70); LAPS2 (0.74); Premier (0.81) (Figure). Conclusions: Clinically-derived inpatient heart failure mortality models exhibited similar performance with c statistics hovering around 0.70. A generic clinical mortality prediction model (LAPS2) had slightly better performance, as did a detailed administrative model. Any of these models may be useful for severity adjustment in comparative effectiveness studies of heart failure patients. When clinical data are not available, the administrative model performs similarly to clinical models.


2013 ◽  
Vol 35 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Jason Lee ◽  
Toshitaka Morishima ◽  
Susumu Kunisawa ◽  
Noriko Sasaki ◽  
Tetsuya Otsubo ◽  
...  

2020 ◽  
Author(s):  
Si-Qiao Liang ◽  
Jian-Xiong Long ◽  
Jingmin Deng ◽  
Xuan Wei ◽  
Mei-Ling Yang ◽  
...  

Abstract Asthma is a serious immune-mediated respiratory airway disease. Its pathological processes involve genetics and the environment, but it remains unclear. To understand the risk factors of asthma, we combined genome-wide association study (GWAS) risk loci and clinical data in predicting asthma using machine-learning approaches. A case–control study with 123 asthma patients and 100 healthy controls was conducted in Zhuang population in Guangxi. GWAS risk loci were detected using polymerase chain reaction, and clinical data were collected. Machine-learning approaches (e.g., extreme gradient boosting [XGBoost], decision tree, support vector machine, and random forest algorithms) were used to identify the major factors that contributed to asthma. A total of 14 GWAS risk loci with clinical data were analyzed on the basis of 10 times of 10-fold cross-validation for all machine-learning models. Using GWAS risk loci or clinical data, the best performances were area under the curve (AUC) values of 64.3% and 71.4%, respectively. Combining GWAS risk loci and clinical data, the XGBoost established the best model with an AUC of 79.7%, indicating that the combination of genetics and clinical data can enable improved performance. We then sorted the importance of features and found that the top six risk factors for predicting asthma were rs3117098, rs7775228, family history, rs2305480, rs4833095, and body mass index. Asthma-prediction models based on GWAS risk loci and clinical data can accurately predict asthma and thus provide insights into the disease pathogenesis of asthma. Further research is required to evaluate more genetic markers and clinical data and predict asthma risk.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Espen Jimenez-Solem ◽  
Tonny S. Petersen ◽  
Casper Hansen ◽  
Christian Hansen ◽  
Christina Lioma ◽  
...  

AbstractPatients with severe COVID-19 have overwhelmed healthcare systems worldwide. We hypothesized that machine learning (ML) models could be used to predict risks at different stages of management and thereby provide insights into drivers and prognostic markers of disease progression and death. From a cohort of approx. 2.6 million citizens in Denmark, SARS-CoV-2 PCR tests were performed on subjects suspected for COVID-19 disease; 3944 cases had at least one positive test and were subjected to further analysis. SARS-CoV-2 positive cases from the United Kingdom Biobank was used for external validation. The ML models predicted the risk of death (Receiver Operation Characteristics—Area Under the Curve, ROC-AUC) of 0.906 at diagnosis, 0.818, at hospital admission and 0.721 at Intensive Care Unit (ICU) admission. Similar metrics were achieved for predicted risks of hospital and ICU admission and use of mechanical ventilation. Common risk factors, included age, body mass index and hypertension, although the top risk features shifted towards markers of shock and organ dysfunction in ICU patients. The external validation indicated fair predictive performance for mortality prediction, but suboptimal performance for predicting ICU admission. ML may be used to identify drivers of progression to more severe disease and for prognostication patients in patients with COVID-19. We provide access to an online risk calculator based on these findings.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alcade Rudakemwa ◽  
Amyl Lucille Cassidy ◽  
Théogène Twagirumugabe

Abstract Background Reasons for admission to intensive care units (ICUs) for obstetric patients vary from one setting to another. Outcomes from ICU and prediction models are not well explored in Rwanda owing to lack of appropriate scores. This study aimed to assess reasons for admission and accuracy of prediction models for mortality of obstetric patients admitted to ICUs of two public tertiary hospitals in Rwanda. Methods We prospectively collected data from all obstetric patients admitted to the ICUs of the two public tertiary hospitals in Rwanda from March 2017 to February 2018 to identify reasons for admission, demographic and clinical characteristics, outcome including death and its predictability by both the Modified Early Obstetric Warning Score (MEOWS) and quick Sequential Organ Failure Assessment (qSOFA). We analysed the accuracy of mortality prediction models by MEOWS or qSOFA by using logistic regression adjusting for factors associated with mortality. Area under the Receiver Operating characteristic (AUROC) curves is used to show the predicting capacity for each individual tool. Results Obstetric patients (n = 94) represented 12.8 % of all 747 ICU admissions which is 1.8 % of all 4.999 admitted women for pregnancy or labor. Sepsis (n = 30; 31.9 %) and obstetric haemorrhage (n = 24; 25.5 %) were the two commonest reasons for ICU admission. Overall ICU mortality for obstetric patients was 54.3 % (n = 51) with average length of stay of 6.6 ± 7.525 days. MEOWS score was an independent predictor of mortality (adjusted (a)OR 1.25; 95 % CI 1.07–1.46) and so was qSOFA score (aOR 2.81; 95 % CI 1.25–6.30) with an adjusted AUROC of 0.773 (95 % CI 0.67–0.88) and 0.764 (95 % CI 0.65–0.87), indicating fair accuracy for ICU mortality prediction in these settings of both MEOWS and qSOFA scores. Conclusions Sepsis and obstetric haemorrhage were the commonest reasons for obstetric admissions to ICU in Rwanda. MEOWS and qSOFA scores could accurately predict ICU mortality of obstetric patients in resource-limited settings, but larger studies are needed before a recommendation for their use in routine practice in similar settings.


Sign in / Sign up

Export Citation Format

Share Document