Hybrid Network Intrusion Detection System for Smart Environments Based on Internet of Things

Author(s):  
Venkatraman Subbarayalu ◽  
B Surendiran ◽  
P Arun Raj Kumar

Abstract The proliferation of Internet of Things (IoT) devices has led to many applications, including smart homes, smart cities and smart industrial control systems. Attacks like Distributed Denial of Service, event control hijacking, spoofing, event replay and zero day attacks are prevalent in smart environments. Conventional Network Intrusion Detection Systems (NIDSs) are tedious to deploy in the smart environment because of numerous communication architectures, manufacturer policies, technologies, standards and application-specific services. To overcome these challenges, we modeled the operational behavior of IoT network events using timed ACs and proposed a novel hybrid NIDS in this paper. A web server is integrated with IoT devices for remote access, and Constrained Application Protocol is employed in inter- and intra-smart device communication. Experiments are conducted in real time to validate our proposal and achieve 99.17% detection accuracy and 0.01% false positives.

2021 ◽  
Vol 8 (1) ◽  
pp. 49-65
Author(s):  
Winfred Yaokumah ◽  
Richard Nunoo Clottey ◽  
Justice Kwame Appati

The open nature of the internet of things network makes it vulnerable to cyber-attacks. Intrusion detection systems aid in detecting and preventing such attacks. This paper offered a systematic review of studies on intrusion detection in IoT, focusing on metrics, methods, datasets, and attack types. This review used 33 network intrusion detection papers in 31 journals and 2 conference proceedings. The results revealed that the majority of the studies used generated or private datasets. Machine learning (ML)-based methods (85%) were used in the studies, while the rest used statistical methods. Eight categories of metrics were identified as prominent in evaluating IoT performance, and 94.9% of the ML-based methods employed average detection rate. Moreover, over 20 attacks on IoT networks were detected, with denial of service (DoS) and sinkhole being the majority. Based on the review, the future direction of research should focus on using public datasets, machine learning-based methods, and metrics such as resource consumption, energy consumption, and power consumption.


Author(s):  
P. Vetrivelan ◽  
M. Jagannath ◽  
T. S. Pradeep Kumar

The Internet has transformed greatly the improved way of business, this vast network and its associated technologies have opened the doors to an increasing number of security threats which are dangerous to networks. The first part of this chapter presents a new dimension of denial of service attacks called TCP SYN Flood attack has been witnessed for severity of damage and second part on worms which is the major threat to the internet. The TCP SYN Flood attack by means of anomaly detection and traces back the real source of the attack using Modified Efficient Packet Marking algorithm (EPM). The mechanism for detecting the smart natured camouflaging worms which is sensed by means of a technique called Modified Controlled Packet Transmission (MCPT) technique. Finally the network which is affected by these types of worms are detected and recovered by means of Modified Centralized Worm Detector (MCWD) mechanism. The Network Intrusion Detection and Prevention Systems (NIDPS) on Flooding and Worm Attacks were analyzed and presented.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Zeeshan Ali Khan ◽  
Peter Herrmann

Many Internet of Things (IoT) systems run on tiny connected devices that have to deal with severe processor and energy restrictions. Often, the limited processing resources do not allow the use of standard security mechanisms on the nodes, making IoT applications quite vulnerable to different types of attacks. This holds particularly for intrusion detection systems (IDS) that are usually too resource-heavy to be handled by small IoT devices. Thus, many IoT systems are not sufficiently protected against typical network attacks like Denial-of-Service (DoS) and routing attacks. On the other side, IDSs have already been successfully used in adjacent network types like Mobile Ad hoc Networks (MANET), Wireless Sensor Networks (WSN), and Cyber-Physical Systems (CPS) which, in part, face limitations similar to those of IoT applications. Moreover, there is research work ongoing that promises IDSs that may better fit to the limitations of IoT devices. In this article, we will give an overview about IDSs suited for IoT networks. Besides looking on approaches developed particularly for IoT, we introduce also work for the three similar network types mentioned above and discuss if they are also suitable for IoT systems. In addition, we present some suggestions for future research work that could be useful to make IoT networks more secure.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 916 ◽  
Author(s):  
Jiyeon Kim ◽  
Jiwon Kim ◽  
Hyunjung Kim ◽  
Minsun Shim ◽  
Eunjung Choi

As cyberattacks become more intelligent, it is challenging to detect advanced attacks in a variety of fields including industry, national defense, and healthcare. Traditional intrusion detection systems are no longer enough to detect these advanced attacks with unexpected patterns. Attackers bypass known signatures and pretend to be normal users. Deep learning is an alternative to solving these issues. Deep Learning (DL)-based intrusion detection does not require a lot of attack signatures or the list of normal behaviors to generate detection rules. DL defines intrusion features by itself through training empirical data. We develop a DL-based intrusion model especially focusing on denial of service (DoS) attacks. For the intrusion dataset, we use KDD CUP 1999 dataset (KDD), the most widely used dataset for the evaluation of intrusion detection systems (IDS). KDD consists of four types of attack categories, such as DoS, user to root (U2R), remote to local (R2L), and probing. Numerous KDD studies have been employing machine learning and classifying the dataset into the four categories or into two categories such as attack and benign. Rather than focusing on the broad categories, we focus on various attacks belonging to same category. Unlike other categories of KDD, the DoS category has enough samples for training each attack. In addition to KDD, we use CSE-CIC-IDS2018 which is the most up-to-date IDS dataset. CSE-CIC-IDS2018 consists of more advanced DoS attacks than that of KDD. In this work, we focus on the DoS category of both datasets and develop a DL model for DoS detection. We develop our model based on a Convolutional Neural Network (CNN) and evaluate its performance through comparison with an Recurrent Neural Network (RNN). Furthermore, we suggest the optimal CNN design for the better performance through numerous experiments.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1210 ◽  
Author(s):  
Khraisat ◽  
Gondal ◽  
Vamplew ◽  
Kamruzzaman ◽  
Alazab

The Internet of Things (IoT) has been rapidly evolving towards making a greater impact on everyday life to large industrial systems. Unfortunately, this has attracted the attention of cybercriminals who made IoT a target of malicious activities, opening the door to a possible attack to the end nodes. Due to the large number and diverse types of IoT devices, it is a challenging task to protect the IoT infrastructure using a traditional intrusion detection system. To protect IoT devices, a novel ensemble Hybrid Intrusion Detection System (HIDS) is proposed by combining a C5 classifier and One Class Support Vector Machine classifier. HIDS combines the advantages of Signature Intrusion Detection System (SIDS) and Anomaly-based Intrusion Detection System (AIDS). The aim of this framework is to detect both the well-known intrusions and zero-day attacks with high detection accuracy and low false-alarm rates. The proposed HIDS is evaluated using the Bot-IoT dataset, which includes legitimate IoT network traffic and several types of attacks. Experiments show that the proposed hybrid IDS provide higher detection rate and lower false positive rate compared to the SIDS and AIDS techniques.


2021 ◽  
Author(s):  
Ming Li ◽  
Dezhi Han ◽  
Dun Li ◽  
Han Liu ◽  
Chin- Chen Chang

Abstract Network intrusion detection, which takes the extraction and analysis of network traffic features as the main method, plays a vital role in network security protection. The current network traffic feature extraction and analysis for network intrusion detection mostly uses deep learning algorithms. Currently, deep learning requires a lot of training resources, and have weak processing capabilities for imbalanced data sets. In this paper, a deep learning model (MFVT) based on feature fusion network and Vision Transformer architecture is proposed, to which improves the processing ability of imbalanced data sets and reduces the sample data resources needed for training. Besides, to improve the traditional raw traffic features extraction methods, a new raw traffic features extraction method (CRP) is proposed, the CPR uses PCA algorithm to reduce all the processed digital traffic features to the specified dimension. On the IDS 2017 dataset and the IDS 2012 dataset, the ablation experiments show that the performance of the proposed MFVT model is significantly better than other network intrusion detection models, and the detection accuracy can reach the state-of-the-art level. And, When MFVT model is combined with CRP algorithm, the detection accuracy is further improved to 99.99%.


Sign in / Sign up

Export Citation Format

Share Document