Building a Fuzzy Logic-Based Artificial Neural Network to Uplift Recommendation Accuracy

2019 ◽  
Vol 63 (11) ◽  
pp. 1624-1632
Author(s):  
Bam Bahadur Sinha ◽  
R Dhanalakshmi

Abstract With the advent of the internet, the recommender system escorts the users in a customized way to nominate items from a massive set of possible alternatives. The emergence of overspecification in recommender system has emphasized negative effects on the context of prediction. The drift of user interest over time is one of the challenging affairs in present personalized recommender system. In this paper, we present a neural network model to improve the recommendation performance along with usage of fuzzy-based clustering to decide membership value of users and matching imputation to cutback sparsity to some extent. We evaluate our model on the MovieLens dataset and show that our model not only elevates accuracy, but also considers the order in which recommendation should be given. We compare the proposed model with a number of state-of-the-art personalization methods and show the dominance of our model using accuracy metrics such as root-mean-square error and mean absolute error.

Author(s):  
Noha Ali ◽  
Ahmed H. AbuEl-Atta ◽  
Hala H. Zayed

<span id="docs-internal-guid-cb130a3a-7fff-3e11-ae3d-ad2310e265f8"><span>Deep learning (DL) algorithms achieved state-of-the-art performance in computer vision, speech recognition, and natural language processing (NLP). In this paper, we enhance the convolutional neural network (CNN) algorithm to classify cancer articles according to cancer hallmarks. The model implements a recent word embedding technique in the embedding layer. This technique uses the concept of distributed phrase representation and multi-word phrases embedding. The proposed model enhances the performance of the existing model used for biomedical text classification. The result of the proposed model overcomes the previous model by achieving an F-score equal to 83.87% using an unsupervised technique that trained on PubMed abstracts called PMC vectors (PMCVec) embedding. Also, we made another experiment on the same dataset using the recurrent neural network (RNN) algorithm with two different word embeddings Google news and PMCVec which achieving F-score equal to 74.9% and 76.26%, respectively.</span></span>


2020 ◽  
Vol 34 (05) ◽  
pp. 9612-9619
Author(s):  
Zhao Zhang ◽  
Fuzhen Zhuang ◽  
Hengshu Zhu ◽  
Zhiping Shi ◽  
Hui Xiong ◽  
...  

The rapid proliferation of knowledge graphs (KGs) has changed the paradigm for various AI-related applications. Despite their large sizes, modern KGs are far from complete and comprehensive. This has motivated the research in knowledge graph completion (KGC), which aims to infer missing values in incomplete knowledge triples. However, most existing KGC models treat the triples in KGs independently without leveraging the inherent and valuable information from the local neighborhood surrounding an entity. To this end, we propose a Relational Graph neural network with Hierarchical ATtention (RGHAT) for the KGC task. The proposed model is equipped with a two-level attention mechanism: (i) the first level is the relation-level attention, which is inspired by the intuition that different relations have different weights for indicating an entity; (ii) the second level is the entity-level attention, which enables our model to highlight the importance of different neighboring entities under the same relation. The hierarchical attention mechanism makes our model more effective to utilize the neighborhood information of an entity. Finally, we extensively validate the superiority of RGHAT against various state-of-the-art baselines.


2020 ◽  
Vol 10 (7) ◽  
pp. 2421
Author(s):  
Bencheng Yan ◽  
Chaokun Wang ◽  
Gaoyang Guo

Recently, graph neural networks (GNNs) have achieved great success in dealing with graph-based data. The basic idea of GNNs is iteratively aggregating the information from neighbors, which is a special form of Laplacian smoothing. However, most of GNNs fall into the over-smoothing problem, i.e., when the model goes deeper, the learned representations become indistinguishable. This reflects the inability of the current GNNs to explore the global graph structure. In this paper, we propose a novel graph neural network to address this problem. A rejection mechanism is designed to address the over-smoothing problem, and a dilated graph convolution kernel is presented to capture the high-level graph structure. A number of experimental results demonstrate that the proposed model outperforms the state-of-the-art GNNs, and can effectively overcome the over-smoothing problem.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Xiushan Zhang

Based on the understanding and comparison of various main recommendation algorithms, this paper focuses on the collaborative filtering algorithm and proposes a collaborative filtering recommendation algorithm with improved user model. Firstly, the algorithm considers the score difference caused by different user scoring habits when expressing preferences and adopts the decoupling normalization method to normalize the user scoring data; secondly, considering the forgetting shift of user interest with time, the forgetting function is used to simulate the forgetting law of score, and the weight of time forgetting is introduced into user score to improve the accuracy of recommendation; finally, the similarity calculation is improved when calculating the nearest neighbor set. Based on the Pearson similarity calculation, the effective weight factor is introduced to obtain a more accurate and reliable nearest neighbor set. The algorithm establishes an offline user model, which makes the algorithm have better recommendation efficiency. Two groups of experiments were designed based on the mean absolute error (MAE). One group of experiments tested the parameters in the algorithm, and the other group of experiments compared the proposed algorithm with other algorithms. The experimental results show that the proposed method has better performance in recommendation accuracy and recommendation efficiency.


2020 ◽  
Author(s):  
Pushkar Khairnar ◽  
Ponkrshnan Thiagarajan ◽  
Susanta Ghosh

Convolutional neural network (CNN) based classification models have been successfully used on histopathological images for the detection of diseases. Despite its success, CNN may yield erroneous or overfitted results when the data is not sufficiently large or is biased. To overcome these limitations of CNN and to provide uncertainty quantification Bayesian CNN is recently proposed. However, we show that Bayesian-CNN still suffers from inaccuracies, especially in negative predictions. In the present work, we extend the Bayesian-CNN to improve accuracy and the rate of convergence. The proposed model is called modified Bayesian-CNN. The novelty of the proposed model lies in an adaptive activation function that contains a learnable parameter for each of the neurons. This adaptive activation function dynamically changes the loss function thereby providing faster convergence and better accuracy. The uncertainties associated with the predictions are obtained since the model learns a probability distribution on the network parameters. It reduces overfitting through an ensemble averaging over networks, which in turn improves accuracy on the unknown data. The proposed model demonstrates significant improvement by nearly eliminating overfitting and remarkably reducing (about 38%) the number of false-negative predictions. We found that the proposed model predicts higher uncertainty for images having features of both the classes. The uncertainty in the predictions of individual images can be used to decide when further human-expert intervention is needed. These findings have the potential to advance the state-of-the-art machine learning-based automatic classification for histopathological images.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhichao Deng ◽  
Meiji Yan ◽  
Xu Xiao

In this paper, we propose an early warning model of credit risk for cross-border e-commerce. Our proposed model, i.e., KPCA-MPSO-BP, is constructed using kernel principal component analysis (KPCA), improved particle swarm optimization (IPSO), and BP neural network. Initially, we use KPCA to reduce the credit risk index for cross-border e-commerce. Next, the inertia weight and threshold of BP neural network are searched using MPSO. Finally, BP neural network is used for training the data of 13 different enterprises of cross-border e-commerce’s credit risk. To analyze the efficiency of our proposed approach, we use the data of five different enterprises for testing and evaluation. The experimental results show that the mean absolute error (MAE) and root mean square error (RMSE) of our model are the lowest in comparison to the existing models and have much better efficiency.


Author(s):  
Takuo Hamaguchi ◽  
Hidekazu Oiwa ◽  
Masashi Shimbo ◽  
Yuji Matsumoto

Knowledge base completion (KBC) aims to predict missing information in a knowledge base. In this paper, we address the out-of-knowledge-base (OOKB) entity problem in KBC: how to answer queries concerning test entities not observed at training time. Existing embedding-based KBC models assume that all test entities are available at training time, making it unclear how to obtain embeddings for new entities without costly retraining. To solve the OOKB entity problem without retraining, we use graph neural networks (Graph-NNs) to compute the embeddings of OOKB entities, exploiting the limited auxiliary knowledge provided at test time. The experimental results show the effectiveness of our proposed model in the OOKB setting. Additionally, in the standard KBC setting in which OOKB entities are not involved, our model achieves state-of-the-art performance on the WordNet dataset.


2020 ◽  
Vol 10 (8) ◽  
pp. 2929 ◽  
Author(s):  
Ibrahem Kandel ◽  
Mauro Castelli

Histopathology is the study of tissue structure under the microscope to determine if the cells are normal or abnormal. Histopathology is a very important exam that is used to determine the patients’ treatment plan. The classification of histopathology images is very difficult to even an experienced pathologist, and a second opinion is often needed. Convolutional neural network (CNN), a particular type of deep learning architecture, obtained outstanding results in computer vision tasks like image classification. In this paper, we propose a novel CNN architecture to classify histopathology images. The proposed model consists of 15 convolution layers and two fully connected layers. A comparison between different activation functions was performed to detect the most efficient one, taking into account two different optimizers. To train and evaluate the proposed model, the publicly available PatchCamelyon dataset was used. The dataset consists of 220,000 annotated images for training and 57,000 unannotated images for testing. The proposed model achieved higher performance compared to the state-of-the-art architectures with an AUC of 95.46%.


Information ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 288 ◽  
Author(s):  
Hossam Faris

Customer churn is one of the most challenging problems for telecommunication companies. In fact, this is because customers are considered as the real asset for the companies. Therefore, more companies are increasing their investments in developing practical solutions that aim at predicting customer churn before it happens. Identifying which customer is about to churn will significantly help the companies in providing solutions to keep their customers and optimize their marketing campaigns. In this work, an intelligent hybrid model based on Particle Swarm Optimization and Feedforward neural network is proposed for churn prediction. PSO is used to tune the weights of the input features and optimize the structure of the neural network simultaneously to increase the prediction power. In addition, the proposed model handles the imbalanced class distribution of the data using an advanced oversampling technique. Evaluation results show that the proposed model can significantly improve the coverage rate of churn customers in comparison with other state-of-the-art classifiers. Moreover, the model has high interpretability, where the assigned feature weights can give an indicator about the importance of their corresponding features in the classification process.


Author(s):  
Duowei Tang ◽  
Peter Kuppens ◽  
Luc Geurts ◽  
Toon van Waterschoot

AbstractAmongst the various characteristics of a speech signal, the expression of emotion is one of the characteristics that exhibits the slowest temporal dynamics. Hence, a performant speech emotion recognition (SER) system requires a predictive model that is capable of learning sufficiently long temporal dependencies in the analysed speech signal. Therefore, in this work, we propose a novel end-to-end neural network architecture based on the concept of dilated causal convolution with context stacking. Firstly, the proposed model consists only of parallelisable layers and is hence suitable for parallel processing, while avoiding the inherent lack of parallelisability occurring with recurrent neural network (RNN) layers. Secondly, the design of a dedicated dilated causal convolution block allows the model to have a receptive field as large as the input sequence length, while maintaining a reasonably low computational cost. Thirdly, by introducing a context stacking structure, the proposed model is capable of exploiting long-term temporal dependencies hence providing an alternative to the use of RNN layers. We evaluate the proposed model in SER regression and classification tasks and provide a comparison with a state-of-the-art end-to-end SER model. Experimental results indicate that the proposed model requires only 1/3 of the number of model parameters used in the state-of-the-art model, while also significantly improving SER performance. Further experiments are reported to understand the impact of using various types of input representations (i.e. raw audio samples vs log mel-spectrograms) and to illustrate the benefits of an end-to-end approach over the use of hand-crafted audio features. Moreover, we show that the proposed model can efficiently learn intermediate embeddings preserving speech emotion information.


Sign in / Sign up

Export Citation Format

Share Document