Relative Assortativity Index: A Quantitative Metric to Assess the Impact of Link Prediction Techniques on Assortativity of Complex Networks

2019 ◽  
Vol 63 (9) ◽  
pp. 1417-1437
Author(s):  
Natarajan Meghanathan

Abstract We propose a quantitative metric (called relative assortativity index, RAI) to assess the extent with which a real-world network would become relatively more assortative due to link addition(s) using a link prediction technique. Our methodology is as follows: for a link prediction technique applied on a particular real-world network, we keep track of the assortativity index values incurred during the sequence of link additions until there is negligible change in the assortativity index values for successive link additions. We count the number of network instances for which the assortativity index after a link addition is greater or lower than the assortativity index prior to the link addition and refer to these counts as relative assortativity count and relative dissortativity count, respectively. RAI is computed as (relative assortativity count − relative dissortativity count) / (relative assortativity count + relative dissortativity count). We analyzed a suite of 80 real-world networks across different domains using 3 representative neighborhood-based link prediction techniques (Preferential attachment, Adamic Adar and Jaccard coefficients [JACs]). We observe the RAI values for the JAC technique to be positive and larger for several real-world networks, while most of the biological networks exhibited positive RAI values for all the three techniques.

2021 ◽  
Author(s):  
Lyndsay Roach

The study of networks has been propelled by improvements in computing power, enabling our ability to mine and store large amounts of network data. Moreover, the ubiquity of the internet has afforded us access to records of interactions that have previously been invisible. We are now able to study complex networks with anywhere from hundreds to billions of nodes; however, it is difficult to visualize large networks in a meaningful way. We explore the process of visualizing real-world networks. We first discuss the properties of complex networks and the mechanisms used in the network visualizing software Gephi. Then we provide examples of voting, trade, and linguistic networks using data extracted from on-line sources. We investigate the impact of hidden community structures on the analysis of these real-world networks.


2020 ◽  
Vol 117 (26) ◽  
pp. 14812-14818 ◽  
Author(s):  
Bin Zhou ◽  
Xiangyi Meng ◽  
H. Eugene Stanley

Whether real-world complex networks are scale free or not has long been controversial. Recently, in Broido and Clauset [A. D. Broido, A. Clauset,Nat. Commun.10, 1017 (2019)], it was claimed that the degree distributions of real-world networks are rarely power law under statistical tests. Here, we attempt to address this issue by defining a fundamental property possessed by each link, the degree–degree distance, the distribution of which also shows signs of being power law by our empirical study. Surprisingly, although full-range statistical tests show that degree distributions are not often power law in real-world networks, we find that in more than half of the cases the degree–degree distance distributions can still be described by power laws. To explain these findings, we introduce a bidirectional preferential selection model where the link configuration is a randomly weighted, two-way selection process. The model does not always produce solid power-law distributions but predicts that the degree–degree distance distribution exhibits stronger power-law behavior than the degree distribution of a finite-size network, especially when the network is dense. We test the strength of our model and its predictive power by examining how real-world networks evolve into an overly dense stage and how the corresponding distributions change. We propose that being scale free is a property of a complex network that should be determined by its underlying mechanism (e.g., preferential attachment) rather than by apparent distribution statistics of finite size. We thus conclude that the degree–degree distance distribution better represents the scale-free property of a complex network.


2017 ◽  
Vol 28 (04) ◽  
pp. 1750053
Author(s):  
Yabing Yao ◽  
Ruisheng Zhang ◽  
Fan Yang ◽  
Yongna Yuan ◽  
Rongjing Hu ◽  
...  

As a significant problem in complex networks, link prediction aims to find the missing and future links between two unconnected nodes by estimating the existence likelihood of potential links. It plays an important role in understanding the evolution mechanism of networks and has broad applications in practice. In order to improve prediction performance, a variety of structural similarity-based methods that rely on different topological features have been put forward. As one topological feature, the path information between node pairs is utilized to calculate the node similarity. However, many path-dependent methods neglect the different contributions of paths for a pair of nodes. In this paper, a local weighted path (LWP) index is proposed to differentiate the contributions between paths. The LWP index considers the effect of the link degrees of intermediate links and the connectivity influence of intermediate nodes on paths to quantify the path weight in the prediction procedure. The experimental results on 12 real-world networks show that the LWP index outperforms other seven prediction baselines.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Longjie Li ◽  
Shenshen Bai ◽  
Mingwei Leng ◽  
Lu Wang ◽  
Xiaoyun Chen

Link prediction, which aims to forecast potential or missing links in a complex network based on currently observed information, has drawn growing attention from researchers. To date, a host of similarity-based methods have been put forward. Usually, one method harbors the idea that one similarity measure is applicable to various networks, and thus has performance fluctuation on different networks. In this paper, we propose a novel method to solve this issue by regarding link prediction as a multiple-attribute decision-making (MADM) problem. In the proposed method, we consider RA, LP, and CAR indices as the multiattribute for node pairs. The technique for order performance by similarity to ideal solution (TOPSIS) is adopted to aggregate the multiattribute and rank node pairs. The proposed method is not limited to only one similarity measure, but takes separate measures into account, since different networks may have different topological structures. Experimental results on 10 real-world networks manifest that the proposed method is superior in comparison to state-of-the-art methods.


2017 ◽  
Vol 31 (20) ◽  
pp. 1750129 ◽  
Author(s):  
Jin-Xuan Yang ◽  
Xiao-Dong Zhang

There are many community organizations in social and biological networks. How to identify these community structure in complex networks has become a hot issue. In this paper, an algorithm to detect community structure of networks is proposed by using spectra of distance modularity matrix. The proposed algorithm focuses on the distance of vertices within communities, rather than the most weakly connected vertex pairs or number of edges between communities. The experimental results show that our method achieves better effectiveness to identify community structure for a variety of real-world networks and computer generated networks with a little more time-consumption.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 977
Author(s):  
Nickie Lefevr ◽  
Andreas Kanavos ◽  
Vassilis C. Gerogiannis ◽  
Lazaros Iliadis ◽  
Panagiotis Pintelas

Complex networks constitute a new field of scientific research that is derived from the observation and analysis of real-world networks, for example, biological, computer and social ones. An important subset of complex networks is the biological, which deals with the numerical examination of connections/associations among different nodes, namely interfaces. These interfaces are evolutionary and physiological, where network epidemic models or even neural networks can be considered as representative examples. The investigation of the corresponding biological networks along with the study of human diseases has resulted in an examination of networks regarding medical supplies. This examination aims at a more profound understanding of concrete networks. Fuzzy logic is considered one of the most powerful mathematical tools for dealing with imprecision, uncertainties and partial truth. It was developed to consider partial truth values, between completely true and completely false, and aims to provide robust and low-cost solutions to real-world problems. In this manuscript, we introduce a fuzzy implementation of epidemic models regarding the Human Immunodeficiency Virus (HIV) spreading in a sample of needle drug individuals. Various fuzzy scenarios for a different number of users and different number of HIV test samples per year are analyzed in order for the samples used in the experiments to vary from case to case. To the best of our knowledge, analyzing HIV spreading with fuzzy-based simulation scenarios is a research topic that has not been particularly investigated in the literature. The simulation results of the considered scenarios demonstrate that the existence of fuzziness plays an important role in the model setup process as well as in analyzing the effects of the disease spread.


2021 ◽  
Author(s):  
Lyndsay Roach

The study of networks has been propelled by improvements in computing power, enabling our ability to mine and store large amounts of network data. Moreover, the ubiquity of the internet has afforded us access to records of interactions that have previously been invisible. We are now able to study complex networks with anywhere from hundreds to billions of nodes; however, it is difficult to visualize large networks in a meaningful way. We explore the process of visualizing real-world networks. We first discuss the properties of complex networks and the mechanisms used in the network visualizing software Gephi. Then we provide examples of voting, trade, and linguistic networks using data extracted from on-line sources. We investigate the impact of hidden community structures on the analysis of these real-world networks.


2018 ◽  
Vol 32 (11) ◽  
pp. 1850128 ◽  
Author(s):  
LanXi Li ◽  
XuZhen Zhu ◽  
Hui Tian

Link prediction in complex networks has become a common focus of many researchers. But most existing methods concentrate on neighbors, and rarely consider degree heterogeneity of two endpoints. Node degree represents the importance or status of endpoints. We describe the large-degree heterogeneity as the nonequilibrium between nodes. This nonequilibrium facilitates a stable cooperation between endpoints, so that two endpoints with large-degree heterogeneity tend to connect stably. We name such a phenomenon as the nonequilibrium cooperation effect. Therefore, this paper proposes a link prediction method based on the nonequilibrium cooperation effect to improve accuracy. Theoretical analysis will be processed in advance, and at the end, experiments will be performed in 12 real-world networks to compare the mainstream methods with our indices in the network through numerical analysis.


2013 ◽  
Vol 27 (12) ◽  
pp. 1350052 ◽  
Author(s):  
CHEN-XI SHAO ◽  
HUI-LING DOU ◽  
RONG-XU YANG ◽  
BING-HONG WANG

Zero-degree nodes are an important difficulty in sparse networks' link prediction. Clustering and preferential attachment, as the most important characteristics of complex networks, have been paid little attention in similarity indices. Inspired by the coexistence of clustering and preferential attachment in real networks, this paper proposes a new preferential attachment index and new clustering index, which have here been integrated into a hybrid index that considers the dynamic evolutionary forces of complex networks and can solve the problem of excessive zero-degree nodes in sparse networks and check evolution mechanism. Experiments proved prediction accuracy can be remarkably enhanced.


2015 ◽  
Vol 26 (06) ◽  
pp. 1550066 ◽  
Author(s):  
J. Esquivel-Gómez ◽  
R. E. Balderas-Navarro ◽  
Edgardo Ugalde ◽  
J. Acosta-Elías

Several real-world directed networks do not have multiple links. For example, in a paper citation network a paper does not cite two identical references, and in a network of friends there exists only a single link between two individuals. This suggest that the growth and evolution models of complex networks should take into account such feature in order to approximate the topological properties of this class of networks. The aim of this paper is to propose a growth model of directed complex networks that takes into account the prohibition of the existence multiple links. It is shown through numerical experiments that when multiple links are forbidden, the exponent γ of the in-degree connectivity distribution, [Formula: see text], takes values ranging from 1 to ∞. In particular, the proposed multi-link free (MLF) model is able to predict exponents occurring in real-world complex networks, which range 1.05 < γ < 3.51. As an example, the MLF reproduces somxe topological properties exhibited by the network of flights between airports of the world (NFAW); i.e. γ ≈ 1.74. With this result, we believe that the multiple links prohibition might be one of the local processes accounting for the existence of exponents γ < 2 found in some real complex networks.


Sign in / Sign up

Export Citation Format

Share Document